n个月前rollapply()

时间:2019-02-22 20:03:24

标签: r dataframe zoo

我正在寻找一种使用rollapply将序列按n个月划分为序列的方法。假设您具有以下条件:

z <- zoo(101:465, as.Date(1:365))
as.data.frame(z)

我想获取每个n个月的索引值向量(或列表)列表,以便我可以处理数据...就像在rollapply中实现width参数一样,除了在这种情况下,width是变量(取决于一个月中的天数)。

注意:希望使用base-R解决方案,但是看到其他可以使用的库会很有趣

3 个答案:

答案 0 :(得分:3)

不确定,我做对了。但这也许可行:

# create data
z <- zoo::zoo(101:465, as.Date(1:365))

# everything you need is cut it by quarter
quarters <- cut(as.Date(index(z)), breaks = 'quarter', labels = F)
# but if you want list of indices, you make them this way
idxs <- split(seq_along(z), quarters)

# to see what you've got
dplyr::glimpse(idxs)
List of 5
 $ 1: int [1:89] 1 2 3 4 5 6 7 8 9 10 ...
 $ 2: int [1:91] 90 91 92 93 94 95 96 97 98 99 ...
 $ 3: int [1:92] 181 182 183 184 185 186 187 188 189 190 ...
 $ 4: int [1:92] 273 274 275 276 277 278 279 280 281 282 ...
 $ 5: int 365

答案 1 :(得分:2)

1。聚集

如果您要查找的是问题答案中的代码所描述的处理,则最好将所查找的内容描述为集合而不是函数的滚动应用。

要获取每个月,每个季度和每n个月的平均值,请使用aggregate.zoo

myfun <- mean
aggregate(z, as.yearmon, myfun)
## Jan 1970 Feb 1970 Mar 1970 Apr 1970 May 1970 Jun 1970 Jul 1970 Aug 1970 
##    115.5    144.5    174.0    204.5    235.0    265.5    296.0    327.0 
## Sep 1970 Oct 1970 Nov 1970 Dec 1970 Jan 1971 
##    357.5    388.0    418.5    449.0    465.0 

aggregate(z, as.yearqtr, myfun)
## 1970 Q1 1970 Q2 1970 Q3 1970 Q4 1971 Q1 
##   145.0   235.0   326.5   418.5   465.0 

n <- 3
aggregate(z, as.Date(cut(index(z), paste(n, "months"))), myfun)
## 1970-01-01 1970-04-01 1970-07-01 1970-10-01 1971-01-01 
##      145.0      235.0      326.5      418.5      465.0 

或使用as.yearmon代替as.Date。在上面的mean中可以用任意函数代替。

2。 rollapply

a)如果您确实想滚动n个月,请创建一个Zoo对象ag,该对象每月有1行,短时间内有31列,用NA填充多余的列。然后运行rollapplyr,该函数的功能是将每次迭代的数据分解为一个长向量,从而删除在短短几个月末添加的NA,并将其输入到我们的任意函数中。

n <- 3
myfun <- mean

ag <- aggregate(z, as.yearmon, "length<-", value = 31)
rollapplyr(ag, n, function(x) myfun(na.omit(c(t(x)))), fill = NA, by.column = FALSE)
## Jan 1970 Feb 1970 Mar 1970 Apr 1970 May 1970 Jun 1970 Jul 1970 Aug 1970 
##       NA       NA    145.0    175.0    204.5    235.0    265.5    296.5 
## Sep 1970 Oct 1970 Nov 1970 Dec 1970 Jan 1971 
##    326.5    357.5    388.0    418.5    434.5 

b)另一种可能性是:

s <- split(z, as.yearmon(index(z)))
r <- rollapplyr(seq_along(s), n, function(ix) myfun(unlist(s[ix])), fill = NA)
zoo(r, as.yearmon(names(s), "%b %Y"))   
## Jan 1970 Feb 1970 Mar 1970 Apr 1970 May 1970 Jun 1970 Jul 1970 Aug 1970 
##       NA       NA    145.0    175.0    204.5    235.0    265.5    296.5 
## Sep 1970 Oct 1970 Nov 1970 Dec 1970 Jan 1971 
##    326.5    357.5    388.0    418.5    434.5 

3。均值滚动

以下内容的意思是平均的,但是取决于您的任意功能,可以对其进行修改。

a)首先,创建一个2列动物园对象ag,其行是每个月的总和和长度,然后在其上使用rollapplyr

n <- 3
ag2 <- aggregate(z, as.yearmon, function(x) c(sum(x), length(x)))
rollapplyr(ag2, 3, function(x) sum(x[, 1]) / sum(x[, 2]), fill = NA, by.column = FALSE)
## Jan 1970 Feb 1970 Mar 1970 Apr 1970 May 1970 Jun 1970 Jul 1970 Aug 1970 
##       NA       NA    145.0    175.0    204.5    235.0    265.5    296.5 
## Sep 1970 Oct 1970 Nov 1970 Dec 1970 Jan 1971 
##    326.5    357.5    388.0    418.5    434.5 

b)或另一种替代方法是创建一个复杂的动物园对象ag3,其实部和虚部分别是每个月的天数和天数以及用途{{1} }:

rollapplyr

答案 2 :(得分:1)

最终为动物园对象滚动了我自己的rollapply():

帮助功能

   get.months.elapsed <- function(start.date, end.date) {
      ed <- as.POSIXlt(end.date)
      sd <- as.POSIXlt(start.date)
      12 * (ed$year - sd$year) + (ed$mon - sd$mon)
    }

1。前滚窗口:

rollapply.list.date.range <- function(data, num.of.months, FUN) 
{
  dates.list <- index(data)
  seq.list <- sapply(dates.list, FUN = function(x) {
     dt <- as.integer(x[1])
     cur.seq.list <- separate.by.months(dt, dates.list, num.of.months)
     names(cur.seq.list) <- dt
     return(cur.seq.list)
  })

  lapply(seq.list, FUN)
}

separate.by.months <- function(dt, dates.list, num.of.months) 
{
  date.seq.indexes <- sapply(dates.list, function(x) { 
    date.diff <- as.integer(x) - dt
    date.normalized <- get.months.elapsed(as.Date(0), as.Date(date.diff))
    floor(date.normalized  / num.of.months)
  })

  seq.list <- split(dates.list, date.seq.indexes)
  seq.list["0"]
}

2。反向滚动窗口:

rollapply.date.range <- function(data, num.of.months, FUN) 
{
  dates.list <- rev(index(data))
  seq.list <- sapply(dates.list, FUN = function(x) {
     dt <- x[1]
     cur.seq.list <- separate.by.months(dt, dates.list, num.of.months)
     names(cur.seq.list) <- dt
     return(cur.seq.list)
  })

  lapply(seq.list, FUN)
}

separate.by.months <- function(dt, dates.list, num.of.months) 
{
  date.seq.indexes <- sapply(dates.list, function(x) { 
    date.diff <- as.integer(x) - as.integer(dt)
    date.normalized <- ifelse(sign(date.diff) == 1, -9999, -get.months.elapsed(as.Date(0), as.Date(date.diff)))
    floor(date.normalized  / num.of.months)
  })

  seq.list <- split(dates.list, date.seq.indexes)
  seq.list["0"]
}

然后您将其命名为:

rollapply.list.date.range(z, 3, mean)