NumPy:计算NaNs去除的平均值

时间:2011-03-30 00:50:19

标签: python numpy nan

如何计算矩阵中的矩阵平均值,但是要从计算中删除nan值? (对于R人,请考虑na.rm = TRUE)。

这是我的[非]工作示例:

import numpy as np
dat = np.array([[1, 2, 3],
                [4, 5, np.nan],
                [np.nan, 6, np.nan],
                [np.nan, np.nan, np.nan]])
print(dat)
print(dat.mean(1))  # [  2.  nan  nan  nan]

删除NaN后,我的预期输出为:

array([ 2.,  4.5,  6.,  nan])

12 个答案:

答案 0 :(得分:35)

我认为你想要的是一个蒙面数组:

dat = np.array([[1,2,3], [4,5,nan], [nan,6,nan], [nan,nan,nan]])
mdat = np.ma.masked_array(dat,np.isnan(dat))
mm = np.mean(mdat,axis=1)
print mm.filled(np.nan) # the desired answer

编辑:合并所有时间数据

   from timeit import Timer

    setupstr="""
import numpy as np
from scipy.stats.stats import nanmean    
dat = np.random.normal(size=(1000,1000))
ii = np.ix_(np.random.randint(0,99,size=50),np.random.randint(0,99,size=50))
dat[ii] = np.nan
"""  

    method1="""
mdat = np.ma.masked_array(dat,np.isnan(dat))
mm = np.mean(mdat,axis=1)
mm.filled(np.nan)    
"""

    N = 2
    t1 = Timer(method1, setupstr).timeit(N)
    t2 = Timer("[np.mean([l for l in d if not np.isnan(l)]) for d in dat]", setupstr).timeit(N)
    t3 = Timer("np.array([r[np.isfinite(r)].mean() for r in dat])", setupstr).timeit(N)
    t4 = Timer("np.ma.masked_invalid(dat).mean(axis=1)", setupstr).timeit(N)
    t5 = Timer("nanmean(dat,axis=1)", setupstr).timeit(N)

    print 'Time: %f\tRatio: %f' % (t1,t1/t1 )
    print 'Time: %f\tRatio: %f' % (t2,t2/t1 )
    print 'Time: %f\tRatio: %f' % (t3,t3/t1 )
    print 'Time: %f\tRatio: %f' % (t4,t4/t1 )
    print 'Time: %f\tRatio: %f' % (t5,t5/t1 )

返回:

Time: 0.045454  Ratio: 1.000000
Time: 8.179479  Ratio: 179.950595
Time: 0.060988  Ratio: 1.341755
Time: 0.070955  Ratio: 1.561029
Time: 0.065152  Ratio: 1.433364

答案 1 :(得分:18)

如果效果很重要,则应使用bottleneck.nanmean()代替:

http://pypi.python.org/pypi/Bottleneck

答案 2 :(得分:12)

答案 3 :(得分:8)

也可以动态创建带有nans过滤掉的蒙面数组:

print np.ma.masked_invalid(dat).mean(1)

答案 4 :(得分:8)

您始终可以找到以下内容的解决方法:

numpy.nansum(dat, axis=1) / numpy.sum(numpy.isfinite(dat), axis=1)

Numpy 2.0的numpy.mean有一个skipna选项可以解决这个问题。

答案 5 :(得分:3)

这是基于JoshAdel建议的解决方案。

定义以下功能:

def nanmean(data, **args):
    return numpy.ma.filled(numpy.ma.masked_array(data,numpy.isnan(data)).mean(**args), fill_value=numpy.nan)

使用示例:

data = [[0, 1, numpy.nan], [8, 5, 1]]
data = numpy.array(data)
print data
print nanmean(data)
print nanmean(data, axis=0)
print nanmean(data, axis=1)

将打印出来:

[[  0.   1.  nan]
 [  8.   5.   1.]]

3.0

[ 4.  3.  1.]

[ 0.5         4.66666667]

答案 6 :(得分:2)

如何使用Pandas来做到这一点:

import numpy as np
import pandas as pd
dat = np.array([[1, 2, 3], [4, 5, np.nan], [np.nan, 6, np.nan], [np.nan, np.nan, np.nan]])
print dat
print dat.mean(1)

df = pd.DataFrame(dat)
print df.mean(axis=1)

给出:

0    2.0
1    4.5
2    6.0
3    NaN

答案 7 :(得分:2)

从numpy 1.8(2013-10-30发布)开始,nanmean完全符合您的需求:

>>> import numpy as np
>>> np.nanmean(np.array([1.5, 3.5, np.nan]))
2.5

答案 8 :(得分:1)

或者你使用新上传的laxarray,这是一个蒙面数组的包装器。

import laxarray as la
la.array(dat).mean(axis=1)
按照JoshAdel的协议,我得到了:

Time: 0.048791  Ratio: 1.000000   
Time: 0.062242  Ratio: 1.275689   # laxarray's one-liner

所以laxarray稍慢(需要检查原因,可能是可修复的),但更容易使用并允许使用字符串标注尺寸。

结帐:https://github.com/perrette/laxarray

编辑:我已经检查了另一个模块,“la”,拉里,它击败了所有测试:

import la
la.larry(dat).mean(axis=1)

By hand, Time: 0.049013 Ratio: 1.000000
Larry,   Time: 0.005467 Ratio: 0.111540
laxarray Time: 0.061751 Ratio: 1.259889

令人印象深刻!

答案 9 :(得分:0)

对所有提议的方法进行一次速度检查:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Jan 19 2016, 12:08:31) [MSC v.1500 64 bit (AMD64)]
IPython 4.0.1 -- An enhanced Interactive Python.

import numpy as np
from scipy.stats.stats import nanmean    
dat = np.random.normal(size=(1000,1000))
ii = np.ix_(np.random.randint(0,99,size=50),np.random.randint(0,99,size=50))
dat[ii] = np.nan
In[185]: def method1():
    mdat = np.ma.masked_array(dat,np.isnan(dat))
    mm = np.mean(mdat,axis=1)
    mm.filled(np.nan) 

In[190]: %timeit method1()
100 loops, best of 3: 7.09 ms per loop
In[191]: %timeit [np.mean([l for l in d if not np.isnan(l)]) for d in dat]
1 loops, best of 3: 1.04 s per loop
In[192]: %timeit np.array([r[np.isfinite(r)].mean() for r in dat])
10 loops, best of 3: 19.6 ms per loop
In[193]: %timeit np.ma.masked_invalid(dat).mean(axis=1)
100 loops, best of 3: 11.8 ms per loop
In[194]: %timeit nanmean(dat,axis=1)
100 loops, best of 3: 6.36 ms per loop
In[195]: import bottleneck as bn
In[196]: %timeit bn.nanmean(dat,axis=1)
1000 loops, best of 3: 1.05 ms per loop
In[197]: from scipy import stats
In[198]: %timeit stats.nanmean(dat)
100 loops, best of 3: 6.19 ms per loop

所以最好的是'bottleneck.nanmean(dat,axis = 1)' 'scipy.stats.nanmean(dat)'并不比numpy.nanmean(dat, axis=1)快。

答案 10 :(得分:0)

# I suggest you this way:
import numpy as np
dat  = np.array([[1, 2, 3], [4, 5, np.nan], [np.nan, 6, np.nan], [np.nan, np.nan, np.nan]])
dat2 = np.ma.masked_invalid(dat)
print np.mean(dat2, axis=1)   

答案 11 :(得分:-1)

'''define dataMat'''
numFeat= shape(datMat)[1]
for i in range(numFeat):
     meanVal=mean(dataMat[nonzero(~isnan(datMat[:,i].A))[0],i])