我正在尝试计算包含NaN的大型numpy数组中的移动平均值。目前我正在使用:
import numpy as np
def moving_average(a,n=5):
ret = np.cumsum(a,dtype=float)
ret[n:] = ret[n:]-ret[:-n]
return ret[-1:]/n
使用蒙版数组计算时:
x = np.array([1.,3,np.nan,7,8,1,2,4,np.nan,np.nan,4,4,np.nan,1,3,6,3])
mx = np.ma.masked_array(x,np.isnan(x))
y = moving_average(mx).filled(np.nan)
print y
>>> array([3.8,3.8,3.6,nan,nan,nan,2,2.4,nan,nan,nan,2.8,2.6])
我正在寻找的结果(下面)理想情况下应该只在原始数组x具有NaN的地方使用NaN,并且应该对分组中的非NaN元素的数量进行平均(我需要一些改变函数中n的大小的方法。)
y = array([4.75,4.75,nan,4.4,3.75,2.33,3.33,4,nan,nan,3,3.5,nan,3.25,4,4.5,3])
我可以遍历整个数组并按索引检查索引,但我使用的数组非常大,这需要很长时间。有没有一种简单的方式来做到这一点?
答案 0 :(得分:1)
我之前只是添加了很好的答案,你仍然可以使用cumsum来实现这个目标:
import numpy as np
def moving_average(a, n=5):
ret = np.cumsum(a.filled(0))
ret[n:] = ret[n:] - ret[:-n]
counts = np.cumsum(~a.mask)
counts[n:] = counts[n:] - counts[:-n]
ret[~a.mask] /= counts[~a.mask]
ret[a.mask] = np.nan
return ret
x = np.array([1.,3,np.nan,7,8,1,2,4,np.nan,np.nan,4,4,np.nan,1,3,6,3])
mx = np.ma.masked_array(x,np.isnan(x))
y = moving_average(mx)
答案 1 :(得分:0)
您可以创建一个临时数组并使用np.nanmean()(如果我没有弄错的话,在版本1.8中新建):
means[np.isnan(x[:-5])] = np.nan
并使用ArrayList
然而,就内存(堆叠相同的阵列,跨越5次)和计算而言,这看起来都是多余的。
答案 2 :(得分:0)
如果我理解正确,您希望创建移动平均线,然后将结果元素填充为nan
,如果它们在原始数组中的索引为nan
。
import numpy as np
>>> inc = 5 #the moving avg increment
>>> x = np.array([1.,3,np.nan,7,8,1,2,4,np.nan,np.nan,4,4,np.nan,1,3,6,3])
>>> mov_avg = np.array([np.nanmean(x[idx:idx+inc]) for idx in range(len(x))])
# Determine indices in x that are nans
>>> nan_idxs = np.where(np.isnan(x))[0]
# Populate output array with nans
>>> mov_avg[nan_idxs] = np.nan
>>> mov_avg
array([ 4.75, 4.75, nan, 4.4, 3.75, 2.33333333, 3.33333333, 4., nan, nan, 3., 3.5, nan, 3.25, 4., 4.5, 3.])
答案 3 :(得分:0)
这是一种使用步幅的方法 -
w = 5 # Window size
n = x.strides[0]
avgs = np.nanmean(np.lib.stride_tricks.as_strided(x, \
shape=(x.size-w+1,w), strides=(n,n)),1)
x_rem = np.append(x[-w+1:],np.full(w-1,np.nan))
avgs_rem = np.nanmean(np.lib.stride_tricks.as_strided(x_rem, \
shape=(w-1,w), strides=(n,n)),1)
avgs = np.append(avgs,avgs_rem)
avgs[np.isnan(x)] = np.nan
答案 4 :(得分:0)
Pandas具有很多非常好的功能。例如:
x = np.array([np.nan, np.nan, 3, 3, 3, np.nan, 5, 7, 7])
# requires three valid values in a row or the resulting value is null
print(pd.Series(x).rolling(3).mean())
#output
nan,nan,nan, nan, 3, nan, nan, nan, 6.333
# only requires 2 valid values out of three for size=3 window
print(pd.Series(x).rolling(3, min_periods=2).mean())
#output
nan, nan, nan, 3, 3, 3, 4, 6, 6.3333
您可以使用windows / min_periods玩耍,并考虑在链接的一行代码中全部填充空值。