我正在尝试在大型数据集上训练相当大的LSTM,并具有4个GPU来分配负载。如果我尝试只训练其中的一个(其中的每个,我都尝试过),它就可以正常运行,但是在添加multi_gpu_model代码后,当我尝试运行它时,它会使我的整个系统崩溃。 这是我的多GPU代码
batch_size = 8
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(Dense(len(outputData[0][0]), activation='softmax'))
rms = RMSprop()
p_model = multi_gpu_model(model, gpus=4)
p_model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])
print("Fitting")
p_model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250, verbose=1, shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")
将此更改为
batch_size = 8
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(Dense(len(outputData[0][0]), activation='softmax'))
rms = RMSprop()
model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])
print("Fitting")
model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250, verbose=1, shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")
功能完美
3个GPU是Nvidia 1060 3GB,1个是6GB,系统具有大约4GB的内存(尽管我怀疑这是问题,因为我使用的是发生器)。
答案 0 :(得分:0)
Keras使用所有4个GPU计算,并且可以使用CPU进行代码编译。您可以尝试以下代码。有关更多信息,请参见tensorflow网站链接https://www.tensorflow.org/api_docs/python/tf/keras/utils/multi_gpu_model
def create_model():
batch_size = 8
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(len(inputData[0]), len(inputData[0][0])) ))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(.2))
model.add(Dense(len(outputData[0][0]), activation='softmax'))
return model
# we'll store a copy of the model on *every* GPU and then combine
# the results from the gradient updates on the CPU
# initialize the model
with tf.device("/cpu:0"):
model = create_model()
# make the model parallel
p_model = multi_gpu_model(model, gpus=4)
rms = RMSprop()
p_model.compile(loss='categorical_crossentropy',optimizer=rms, metrics=['categorical_accuracy'])
print("Fitting")
p_model.fit_generator(songBatchGenerator(songList,batch_size), epochs=250, verbose=1, shuffle=False, steps_per_epoch=math.ceil(len(songList)/batch_size))
pickleSave('kerasTrained.pickle', parallel_model)
print("Saved")