从单个数据帧创建多个pyspark数据帧

时间:2019-02-18 08:58:38

标签: python pandas apache-spark pyspark

我需要根据python列表中的可用值在pyspark中动态创建多个数据框

我的数据框(date gender balance 2018-01-01 M 100 2018-02-01 F 100 2018-03-01 M 100 my_list = [2018-01-01, 2018-02-01, 2018-03-01] for i in my_list: df_i = df.select("*").filter("date=i").limit(1000) )有数据:

if (payloadInitAllChart.barDataHour) { // Example, could be other map() method
  payloadInitAllChart.barDataHour.map(response =>
   state.barChartPerHour.datasetBarHour.push(response)
  );
}

能请你帮忙吗?

1 个答案:

答案 0 :(得分:0)

我不确定是否可以在PySpark中动态创建数据帧的名称。在Python中,您甚至无法dynamically分配变量的名称,更不用说dataframes了。

一种方法是创建dataframes的字典,其中key对应于每个date,而该字典的value对应于数据帧。

对于Python:请参考此link,那里有人问过类似的名称动力问题。

这是一个小的PySpark实现-

from pyspark.sql.functions import col
values = [('2018-01-01','M',100),('2018-02-01','F',100),('2018-03-01','M',100)]
df = sqlContext.createDataFrame(values,['date','gender','balance'])
df.show()
+----------+------+-------+
|      date|gender|balance|
+----------+------+-------+
|2018-01-01|     M|    100|
|2018-02-01|     F|    100|
|2018-03-01|     M|    100|
+----------+------+-------+

# Creating a dictionary to store the dataframes.
# Key: It contains the date from my_list.
# Value: Contains the corresponding dataframe.
dictionary_df = {}  

my_list = ['2018-01-01', '2018-02-01', '2018-03-01']
for i in my_list:
    dictionary_df[i] = df.filter(col('date')==i)

for i in my_list:
    print('DF: '+i)
    dictionary_df[i].show() 

DF: 2018-01-01
+----------+------+-------+
|      date|gender|balance|
+----------+------+-------+
|2018-01-01|     M|    100|
+----------+------+-------+

DF: 2018-02-01
+----------+------+-------+
|      date|gender|balance|
+----------+------+-------+
|2018-02-01|     F|    100|
+----------+------+-------+

DF: 2018-03-01
+----------+------+-------+
|      date|gender|balance|
+----------+------+-------+
|2018-03-01|     M|    100|
+----------+------+-------+

print(dictionary_df)
    {'2018-01-01': DataFrame[date: string, gender: string, balance: bigint], '2018-02-01': DataFrame[date: string, gender: string, balance: bigint], '2018-03-01': DataFrame[date: string, gender: string, balance: bigint]}