我写了以下类型来编码其中所有可能的有理数:
data Number : Type where
PosN : Nat -> Number
Zero : Number
NegN : Nat -> Number
Ratio : Number -> Number -> Number
请注意,PosN Z
实际上编码数字1
,而NegN Z
编码-1
。我更喜欢这样的对称定义,而不是Data.ZZ
模块给出的定义。现在,我有一个令人信服的问题,那就是说服Idris加上这些数字就是总数:
mul : Number -> Number -> Number
mul Zero _ = Zero
mul _ Zero = Zero
mul (PosN k) (PosN j) = PosN (S k * S j - 1)
mul (PosN k) (NegN j) = NegN (S k * S j - 1)
mul (NegN k) (PosN j) = NegN (S k * S j - 1)
mul (NegN k) (NegN j) = PosN (S k * S j - 1)
mul (Ratio a b) (Ratio c d) = Ratio (a `mul` b) (c `mul` d)
mul (Ratio a b) c = Ratio (a `mul` c) b
mul a (Ratio b c) = Ratio (a `mul` b) c
plus : Number -> Number -> Number
plus Zero y = y
plus x Zero = x
plus (PosN k) (PosN j) = PosN (k + j)
plus (NegN k) (NegN j) = NegN (k + j)
plus (PosN k) (NegN j) = subtractNat k j
plus (NegN k) (PosN j) = subtractNat j k
plus (Ratio a b) (Ratio c d) =
let a' = assert_smaller (Ratio a b) a in
let b' = assert_smaller (Ratio a b) b in
let c' = assert_smaller (Ratio c d) c in
let d' = assert_smaller (Ratio c d) d in
Ratio ((mul a' d') `plus` (mul b' c')) (mul b' d')
plus (Ratio a b) c =
let a' = assert_smaller (Ratio a b) a in
let b' = assert_smaller (Ratio a b) b in
Ratio (a' `plus` (mul b' c)) c
plus a (Ratio b c) =
let b' = assert_smaller (Ratio b c) b in
let c' = assert_smaller (Ratio b c) c in
Ratio ((mul a c') `plus` b') (mul a c')
有趣的是,当我在Atom编辑器中按Alt-Ctrl-R时,一切都很好(即使使用%default total
指令)。但是,当我将其加载到REPL时,它警告我plus
可能不是总数:
|
29 | plus Zero y = y
| ~~~~~~~~~~~~~~~
Data.Number.NumType.plus is possibly not total due to recursive path
Data.Number.NumType.plus --> Data.Number.NumType.plus
从该消息中我了解到,对于模式处理比率中对plus
的这些递归调用感到担心。我认为断言a
小于Ratio a b
等可以解决问题,但事实并非如此,因此Idris可能看到了,但是在其他方面遇到了麻烦。不过,我不知道会是什么。
答案 0 :(得分:1)
assert_smaller (Ratio a b) a
已经为Idris所知(毕竟a
是“更大” Ratio a b
类型的参数)。您需要证明(或断言)的是,mul
的结果在结构上小于plus
的参数。
因此它应该与
一起使用plus (Ratio a b) (Ratio c d) =
let x = assert_smaller (Ratio a b) (mul a d) in
let y = assert_smaller (Ratio a b) (mul b c) in
Ratio (x `plus` y) (mul b d)
plus (Ratio a b) c =
let y = assert_smaller (Ratio a b) (mul b c) in
Ratio (a `plus` y) c
plus a (Ratio b c) =
let x = assert_smaller (Ratio b c) (mul a c) in
Ratio (x `plus` b) (mul a c)