我有一个DL4J LSTM模型,该模型生成顺序输入的二进制分类。我已经训练和测试了模型,并对精度/召回率感到满意。现在,我想使用此模型来预测新输入的二进制分类。我该怎么做呢?即如何给受过训练的神经网络一个输入(包含特征行序列的文件)并获得该输入文件的二进制分类。
这是我原始的训练数据集迭代器:
SequenceRecordReader trainFeatures = new CSVSequenceRecordReader(0, ","); //skip no header lines
try {
trainFeatures.initialize( new NumberedFileInputSplit(featureBaseDir + "/s_%d.csv", 0,this._modelDefinition.getNB_TRAIN_EXAMPLES()-1));
} catch (IOException e) {
trainFeatures.close();
throw new IOException(String.format("IO error %s. during trainFeatures", e.getMessage()));
} catch (InterruptedException e) {
trainFeatures.close();
throw new IOException(String.format("Interrupted exception error %s. during trainFeatures", e.getMessage()));
}
SequenceRecordReader trainLabels = new CSVSequenceRecordReader();
try {
trainLabels.initialize(new NumberedFileInputSplit(labelBaseDir + "/s_%d.csv", 0,this._modelDefinition.getNB_TRAIN_EXAMPLES()-1));
} catch (InterruptedException e) {
trainLabels.close();
trainFeatures.close();
throw new IOException(String.format("Interrupted exception error %s. during trainLabels initialise", e.getMessage()));
}
DataSetIterator trainData = new SequenceRecordReaderDataSetIterator(trainFeatures, trainLabels,
this._modelDefinition.getBATCH_SIZE(),this._modelDefinition.getNUM_LABEL_CLASSES(), false, SequenceRecordReaderDataSetIterator.AlignmentMode.ALIGN_END);
这是我的模特:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(this._modelDefinition.getRANDOM_SEED()) //Random number generator seed for improved repeatability. Optional.
.weightInit(WeightInit.XAVIER)
.updater(new Nesterovs(this._modelDefinition.getLEARNING_RATE()))
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue) //Not always required, but helps with this data set
.gradientNormalizationThreshold(0.5)
.list()
.layer(0, new LSTM.Builder().activation(Activation.TANH).nIn(this._modelDefinition.getNB_INPUTS()).nOut(this._modelDefinition.getLSTM_LAYER_SIZE()).build())
.layer(1, new LSTM.Builder().activation(Activation.TANH).nIn(this._modelDefinition.getLSTM_LAYER_SIZE()).nOut(this._modelDefinition.getLSTM_LAYER_SIZE()).build())
.layer(2,new DenseLayer.Builder().nIn(this._modelDefinition.getLSTM_LAYER_SIZE()).nOut(this._modelDefinition.getLSTM_LAYER_SIZE())
.weightInit(WeightInit.XAVIER)
.build())
.layer(3, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX).nIn(this._modelDefinition.getLSTM_LAYER_SIZE()).nOut(this._modelDefinition.getNUM_LABEL_CLASSES()).build())
.pretrain(false).backprop(true).build();
我在N个时期内训练模型以获得最佳分数。我保存了模型,现在我想打开模型并获取新的顺序特征文件的分类。
如果有这样的例子-请告诉我在哪里。
谢谢
anton
答案 0 :(得分:0)
答案是为模型提供与我们训练时完全相同的输入,除了将标签设置为-1。输出将是一个INDarray,它在一个数组中包含0的概率,在另一个数组中包含1的概率,显示在最后一个序列行中。
代码如下:
w
// [[[0,0,0,0,0.9882,0,0,0,0], // [0,0,0,0,0.0118,0,0,0,0]], // // [[0,0.1443,0,0,0,0,0,0,0], // [0,0.8557,0,0,0,0,0,0,0]], // // [[0,0,0,0,0,0,0,0,0.9975], // [0,0,0,0,0,0,0,0,0.0025]], // // [[0,0,0,0,0,0,0.8482,0,0], // [0,0,0,0,0,0,0.1518,0,0]], // // [[0,0,0,0.8760,0,0,0,0,0], // [0,0,0,0.1240,0,0,0,0,0]]]
griddata