我是tensorflow的新手,我使用预先训练过的inceptionV4模型训练我自己的数据 http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz
python train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_name=stamps \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=inception_v4 \
--clone_on_cpu=true \
--checkpoint_path=${PRETRAINED_CHECKPOINT_DIR}/inception_v4.ckpt \
--checkpoint_exclude_scopes=InceptionV4/Logits,InceptionV4/AuxLogits \
--trainable_scopes=InceptionV4/Logits,InceptionV4/AuxLogits \
--max_number_of_steps=50 \
--batch_size=32 \
--learning_rate=0.01 \
--learning_rate_decay_type=fixed \
--save_interval_secs=60 \
--save_summaries_secs=60 \
--log_every_n_steps=100 \
--optimizer=rmsprop \
--weight_decay=0.00004
python eval_image_classifier.py \
--checkpoint_path=${TRAIN_DIR} \
--eval_dir=${TRAIN_DIR} \
--dataset_name=stamps \
--dataset_split_name=validation \
--dataset_dir=${DATASET_DIR} \
--model_name=inception_v4 \
--batch_size=32
使用下面的代码来冻结图表
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder, output_node_names, output_graph):
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
#absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1])
#output_graph = absolute_model_folder + "/frozen_model.pb"
# Before exporting our graph, we need to precise what is our output node
# This is how TF decides what part of the Graph he has to keep and what part it can dump
# NOTE: this variable is plural, because you can have multiple output nodes
output_node_names = output_node_names
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We import the meta graph and retrieve a Saver
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
# We retrieve the protobuf graph definition
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
# We start a session and restore the graph weights
with tf.Session() as sess:
saver.restore(sess, input_checkpoint)
# We use a built-in TF helper to export variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
input_graph_def, # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_folder", type=str, help="Model folder to export")
parser.add_argument("--output_node_names", type=str, default="frozen_model.pb", help="output_node_names")
parser.add_argument("--output_graph", type=str, help="output_graph name")
args = parser.parse_args()
freeze_graph(args.model_folder, args.output_node_names, args.output_graph)
我不知道要使用哪个output_node_name,现在我使用InceptionV4/Logits/Predictions
,
python ${OUTPUT_DIR}/freeze.py --model_folder=${TRAIN_DIR} \
--output_node_names=InceptionV4/Logits/Predictions \
--output_graph=${OUTPUT_DIR}/frozen_inception_v4.pb
那么如何将输出图frozen_inception_v4.pb
用于图像标签?
答案 0 :(得分:1)
查看label_image示例代码,了解使用冻结图像模型的示例:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/label_image/label_image.py
大多数标记的默认值都应该没问题,但您需要--input_mean=-127
,--input_std=127
,--output_layer=InceptionV4/Logits/Prediction
和--graph=${OUTPUT_DIR}/frozen_inception_v4.pb
。
答案 1 :(得分:0)
我在尝试按照tensorflow doc重新训练inception_v3时遇到了同样的问题: https://www.tensorflow.org/tutorials/image_retraining
我无法弄清楚label_image.py中的input_layer应该是什么,但这似乎有效:
https://github.com/Dataweekends/inception-retrain/blob/master/label_image.py