我正在研究回归问题。我有10个自变量。我正在使用SVR。尽管进行了功能选择和使用网格搜索调整SVR参数,但我得到了15%的巨大MAPE。因此,我尝试删除异常值,但是在删除异常值之后,我无法拆分数据。我的问题是,离群值是否会影响回归的准确性?
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import Normalizer
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
import pandas as pd
from sklearn import preprocessing
features=pd.read_csv('selectedData.csv')
target = features['SYSLoad']
features= features.drop('SYSLoad', axis = 1)
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(features))
print(z)
threshold = 3
print(np.where(z > 3))
features2 = features[(z < 3).all(axis=1)]
from sklearn.model_selection import train_test_split
train_input, test_input, train_target, test_target = train_test_split(features2, target, test_size = 0.25, random_state = 42)
在执行以下代码时出现此错误。
“样本:%r”%[长度为l的int(l)])
ValueError:找到数量不一致的输入变量 样本:[33352,35064]“
答案 0 :(得分:1)
您收到错误消息是因为,由于以下原因,您的target
变量与features
的长度相等(大概为35064),原因是:
target = features['SYSLoad']
您的features2
变量的长度较短(大概是33352),即由于以下原因,它是features
的子集:
features2 = features[(z < 3).all(axis=1)]
和您的train_test_split
合理地抱怨特征和标签的长度不相等。
因此,您还应该相应地将target
子集化,并在target2
中使用此train_test_split
:
target2 = target[(z < 3).all(axis=1)]
train_input, test_input, train_target, test_target = train_test_split(features2, target2, test_size = 0.25, random_state = 42)