我试图将KerasClassifier
与OneVsRestClassifier
结合使用,以将多类分类问题分解为不同的二进制分类子问题。
这是我使用的代码:
import keras as k
import scipy as sp
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import RandomizedSearchCV
def build_keras_model(loss = 'binary_crossentropy', metrics = ['accuracy'], optimiser = 'adam',
learning_rate = 0.001, n_neurons = 30, n_layers = 1, n_classes = 2,
l1_reg = 0.001, l2_reg = 0.001, batch_norm = False, dropout = None,
input_shape = (8,)):
model = k.models.Sequential()
model.add(k.layers.Dense(n_neurons,
input_shape = input_shape,
kernel_regularizer = k.regularizers.l1_l2(l1 = l1_reg, l2 = l2_reg),
activation = 'relu'))
if batch_norm is True:
model.add(k.layers.BatchNormalization())
if dropout is not None:
model.add(k.layers.Dropout(dropout))
i = 1
while i < n_layers:
model.add(k.layers.Dense(n_neurons,
kernel_regularizer = k.regularizers.l1_l2(l1 = l1_reg, l2 = l2_reg),
activation = 'relu'))
if batch_norm is True:
model.add(k.layers.BatchNormalization())
if dropout is not None:
model.add(k.layers.Dropout(dropout))
i += 1
del i
model.add(k.layers.Dense(1, activation = 'sigmoid'))
if optimiser == 'adam':
koptimiser = k.optimizers.Adam(lr = learning_rate)
elif optimiser == 'adamax':
koptimiser = k.optimizers.Adamax(lr = learning_rate)
elif optimiser == 'nadam':
koptimiser = k.optimizers.Nadam(lr = learning_rate)
else:
print('Unknown optimiser type')
model.compile(optimizer = koptimiser, loss = loss, metrics = metrics)
model.summary()
return model
#==============================================================
parameters = {
'estimator__optimiser': ['adam', 'adamax', 'nadam'],
'estimator__learning_rate': sp.stats.uniform(0.0005, 0.0015),
'estimator__epochs': sp.stats.randint(10, 50),
'estimator__n_neurons': sp.stats.randint(20, 61),
'estimator__n_layers': sp.stats.randint(1, 3),
'estimator__n_classes': [2],
'estimator__batch_size': sp.stats.randint(1, 11),
'estimator__l1_reg': sp.stats.reciprocal(1e-3, 1e1),
'estimator__l2_reg': sp.stats.reciprocal(1e-3, 1e1),
'estimator__dropout': [None],
'estimator__metrics': [['accuracy']],
'estimator__loss': ['binary_crossentropy'],
'estimator__input_shape': [(X_train.shape[1],)]
}
keras_model = OneVsRestClassifier(KerasClassifier(build_fn = build_keras_model,
class_weight='balanced',
verbose = 1))
clf = RandomizedSearchCV(keras_model,
parameters,
n_iter = 1,
scoring = 'balanced_accuracy',
n_jobs = 1,
cv = 5,
random_state = 100)
clf.fit(X_train, y_train)
model = clf.best_estimator_
此代码失败,并出现以下错误:
/opt/conda/lib/python3.6/site-packages/sklearn/base.py在 克隆(估计量,安全) 71引发RuntimeError((无法克隆对象%s,作为构造函数' 72'未设置或修改参数%s'% ---> 73(估算器,名称) 74返回new_object 75
RuntimeError:无法克隆对象 ,因为构造函数不会设置或修改 参数l1_reg