我正在Keras模型上使用sklearn执行超参数调优优化任务。我正在尝试优化管道中的KerasClassifiers ... 代码如下:
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold,RandomizedSearchCV
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.pipeline import Pipeline
my_seed=7
dataframe = pd.read_csv("z:/sonar.all-data.txt", header=None)
dataset = dataframe.values
# split into input and output variables
X = dataset[:,:60].astype(float)
Y = dataset[:,60]
encoder = LabelEncoder()
Y_encoded=encoder.fit_transform(Y)
myScaler = StandardScaler()
X_scaled = myScaler.fit_transform(X)
def create_keras_model(hidden=60):
model = Sequential()
model.add(Dense(units=hidden, input_dim=60, kernel_initializer="normal", activation="relu"))
model.add(Dense(1, kernel_initializer="normal", activation="sigmoid"))
#compile model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
return model
def create_pipeline(hidden=60):
steps = []
steps.append(('scaler', StandardScaler()))
steps.append(('dl', KerasClassifier(build_fn=create_keras_model,hidden=hidden, verbose=0)))
pipeline = Pipeline(steps)
return pipeline
my_neurons = [15, 30, 60]
my_epochs= [50, 100, 150]
my_batch_size = [5,10]
my_param_grid = dict(hidden=my_neurons, epochs=my_epochs, batch_size=my_batch_size)
model2Tune = KerasClassifier(build_fn=create_keras_model, verbose=0)
model2Tune2 = create_pipeline()
griglia = RandomizedSearchCV(estimator=model2Tune, param_distributions = my_param_grid, n_iter=8 )
griglia.fit(X_scaled, Y_encoded) #this works
griglia2 = RandomizedSearchCV(estimator=create_pipeline, param_distributions = my_param_grid, n_iter=8 )
griglia2.fit(X, Y_encoded) #this does not
我们看到RandomizedSearchCV
适用于griglia,而它不适用于griglia2,返回
" TypeError:estimator应该是一个实现' fit' 方法,已通过"。
是否可以修改代码以使其在Pipeline对象下运行?
提前致谢
答案 0 :(得分:2)
estimator参数需要一个对象,而不是一个指针。目前,您正在传递一个指向生成管道对象的方法的指针。尝试添加()
来解决此问题:
griglia2 = RandomizedSearchCV(estimator=create_pipeline(), param_distributions = my_param_grid, n_iter=8 )
现在关于无效参数错误的第二条评论。您需要将创建管道时定义的名称附加到实际参数,以便可以成功传递它们。
查看Pipeline usage here的说明。
使用此:
my_param_grid = dict(dl__hidden=my_neurons, dl__epochs=my_epochs,
dl__batch_size=my_batch_size)
注意dl__
(带有两个下划线)。当您想要调整管道内多个对象的参数时,这非常有用。
例如,假设与上述参数一起,您还要调整或指定StandardScaler的参数。
然后您的参数网格变为:
my_param_grid = dict(dl__hidden=my_neurons, dl__epochs=my_epochs,
dl__batch_size=my_batch_size,
scaler__with_mean=False)
希望这可以解决问题。