有没有人有一个很好的算法来计算ArcSegment
的终点?这不是圆弧 - 它是椭圆弧。
例如,我有这些初始值:
我知道我的弧最终应该位于X = 0.92和Y = 0.33(通过另一个程序)的位置,但我需要在ArcSegment
中指定终点。我只需要知道如何计算终点,所以看起来像这样:
<ArcSegment Size="0.436,0.593" Point="0.92,0.33" IsLargeArc="False" SweepDirection="Clockwise" />
有谁知道计算这个的好方法? (我认为这不是WPF或任何其他语言,因为数学应该是相同的。)
这是一张图片。除了终点(橙色点)之外,所有值都是已知的。
修改
我发现有一个名为DrawArc
with an overload in .NET GDI+的例程几乎可以满足我的需要(更多关于“几乎在一秒内”)。
为了简化查看,请以下面的示例为例:
Public Sub MyDrawArc(e As PaintEventArgs)
Dim blackPen As New Pen(Color.Black, 2)
Dim x As Single = 0.0F
Dim y As Single = 0.0F
Dim width As Single = 100.0F
Dim height As Single = 200.0F
Dim startAngle As Single = 180.0F
Dim sweepAngle As Single = 135.0F
e.Graphics.DrawArc(blackPen, x, y, width, height, startAngle, sweepAngle)
Dim redPen As New Pen(Color.Red, 2)
e.Graphics.DrawLine(redPen, New Point(0, 55), New Point(95, 55))
End Sub
Private Sub ImageBox_Paint(sender As Object, e As System.Windows.Forms.PaintEventArgs) Handles ImageBox.Paint
MyDrawArc(e)
End Sub
此例程直接将终点设为X=95, Y=55
。针对圆形椭圆提到的其他例程将导致X=85, Y=29
。如果有办法 1)不必画任何东西而 2)让e.Graphics.DrawArc
返回终点坐标,这就是我需要的。
所以现在问题变得清晰了 - 有谁知道e.Graphics.DrawArc
是如何实现的?
答案 0 :(得分:11)
有谁知道e.Graphics.DrawArc是如何实现的?
Graphics.DrawArc
调用gdiplus.dll中的本机函数GdipDrawArcI
。此函数调用同一dll中的arc2polybezier
函数。它似乎使用贝塞尔曲线来近似椭圆弧。为了获得您正在寻找的完全相同的终点,我们必须对该功能进行反向工程并确切地弄清楚它是如何工作的。
幸运的是,Wine的好人有already done that for us。
这是arc2polybezier方法,大致从C转换为C#(请注意,因为这是从Wine翻译的,所以此代码是在LGPL下许可的):
internal class GdiPlus
{
public const int MAX_ARC_PTS = 13;
public static int arc2polybezier(Point[] points, double x1, double y1, double x2, double y2,
double startAngle, double sweepAngle)
{
int i;
double end_angle, start_angle, endAngle;
endAngle = startAngle + sweepAngle;
unstretch_angle(ref startAngle, x2/2.0, y2/2.0);
unstretch_angle(ref endAngle, x2/2.0, y2/2.0);
/* start_angle and end_angle are the iterative variables */
start_angle = startAngle;
for(i = 0; i < MAX_ARC_PTS - 1; i += 3)
{
/* check if we've overshot the end angle */
if(sweepAngle > 0.0)
{
if(start_angle >= endAngle) break;
end_angle = Math.Min(start_angle + Math.PI/2, endAngle);
}
else
{
if(start_angle <= endAngle) break;
end_angle = Math.Max(start_angle - Math.PI/2, endAngle);
}
if(points != null)
{
Point[] returnedPoints = add_arc_part(x1, y1, x2, y2, start_angle, end_angle, i == 0);
//add_arc_part returns a Point[] of size 4
for(int j = 0; j < 4; j++)
points[i + j] = returnedPoints[j];
}
start_angle += Math.PI/2*(sweepAngle < 0.0 ? -1.0 : 1.0);
}
if(i == 0)
return 0;
return i + 1;
}
public static void unstretch_angle(ref double angle, double rad_x, double rad_y)
{
angle = deg2rad(angle);
if(Math.Abs(Math.Cos(angle)) < 0.00001 || Math.Abs(Math.Sin(angle)) < 0.00001)
return;
double stretched = Math.Atan2(Math.Sin(angle)/Math.Abs(rad_y), Math.Cos(angle)/Math.Abs(rad_x));
int revs_off = (int)Math.Round(angle/(2.0*Math.PI), MidpointRounding.AwayFromZero) -
(int)Math.Round(stretched/(2.0*Math.PI), MidpointRounding.AwayFromZero);
stretched += revs_off*Math.PI*2.0;
angle = stretched;
}
public static double deg2rad(double degrees)
{
return Math.PI*degrees/180.0;
}
private static Point[] add_arc_part(double x1, double y1, double x2, double y2,
double start, double end, bool write_first)
{
double center_x,
center_y,
rad_x,
rad_y,
cos_start,
cos_end,
sin_start,
sin_end,
a,
half;
int i;
rad_x = x2/2.0;
rad_y = y2/2.0;
center_x = x1 + rad_x;
center_y = y1 + rad_y;
cos_start = Math.Cos(start);
cos_end = Math.Cos(end);
sin_start = Math.Sin(start);
sin_end = Math.Sin(end);
half = (end - start)/2.0;
a = 4.0/3.0*(1 - Math.Cos(half))/Math.Sin(half);
Point[] pt = new Point[4];
if(write_first)
{
pt[0].X = cos_start;
pt[0].Y = sin_start;
}
pt[1].X = cos_start - a*sin_start;
pt[1].Y = sin_start + a*cos_start;
pt[3].X = cos_end;
pt[3].Y = sin_end;
pt[2].X = cos_end + a*sin_end;
pt[2].Y = sin_end - a*cos_end;
/* expand the points back from the unit circle to the ellipse */
for(i = (write_first ? 0 : 1); i < 4; i ++)
{
pt[i].X = pt[i].X*rad_x + center_x;
pt[i].Y = pt[i].Y*rad_y + center_y;
}
return pt;
}
}
使用此代码作为指南,以及一些数学,我写了这个端点计算器类(不是LGPL):
using System;
using System.Windows;
internal class DrawArcEndPointCalculator
{
public Point GetFinalPoint(Point startPoint, double width, double height,
double startAngle, double sweepAngle)
{
Point radius = new Point(width / 2.0, height / 2.0);
double endAngle = startAngle + sweepAngle;
int sweepDirection = (sweepAngle < 0 ? -1 : 1);
//Adjust the angles for the radius width/height
startAngle = UnstretchAngle(startAngle, radius);
endAngle = UnstretchAngle(endAngle, radius);
//Determine how many times to add the sweep-angle to the start-angle
int angleMultiplier = (int)Math.Floor(2*sweepDirection*(endAngle - startAngle)/Math.PI) + 1;
angleMultiplier = Math.Min(angleMultiplier, 4);
//Calculate the final resulting angle after sweeping
double calculatedEndAngle = startAngle + angleMultiplier*Math.PI/2*sweepDirection;
calculatedEndAngle = sweepDirection*Math.Min(sweepDirection * calculatedEndAngle, sweepDirection * endAngle);
//Calculate the final point
return new Point
{
X = (Math.Cos(calculatedEndAngle) + 1)*radius.X + startPoint.X,
Y = (Math.Sin(calculatedEndAngle) + 1)*radius.Y + startPoint.Y,
};
}
private double UnstretchAngle(double angle, Point radius)
{
double radians = Math.PI * angle / 180.0;
if(Math.Abs(Math.Cos(radians)) < 0.00001 || Math.Abs(Math.Sin(radians)) < 0.00001)
return radians;
double stretchedAngle = Math.Atan2(Math.Sin(radians) / Math.Abs(radius.Y), Math.Cos(radians) / Math.Abs(radius.X));
int rotationOffset = (int)Math.Round(radians / (2.0 * Math.PI), MidpointRounding.AwayFromZero) -
(int)Math.Round(stretchedAngle / (2.0 * Math.PI), MidpointRounding.AwayFromZero);
return stretchedAngle + rotationOffset * Math.PI * 2.0;
}
}
以下是一些例子。请注意,您提供的第一个示例不正确 - 对于这些初始值,DrawArc()
的端点为(0.58,0.97),不(0.92,0.33)。
Point startPoint = new Point(0, 0);
double width = 100;
double height = 200;
double startAngle = 180;
double sweepAngle = 135;
DrawArcEndPointCalculator _endPointCalculator = new DrawArcEndPointCalculator();
Point lastPoint = _endPointCalculator.GetFinalPoint(startPoint, width, height, startAngle, sweepAngle);
Console.WriteLine("X = {0}, Y = {1}", lastPoint.X, lastPoint.Y);
//Output: X = 94.7213595499958, Y = 55.2786404500042
startPoint = new Point(0.251, 0.928);
width = 0.436;
height = 0.593;
startAngle = 169.51;
sweepAngle = 123.78;
_endPointCalculator.GetFinalPoint(startPoint, width, height, startAngle, sweepAngle);
//Returns X = 0.579143189905416, Y = 0.968627455618129
Point startPoint = new Point(0, 0);
double width = 20;
double height = 30;
double startAngle = 90;
double sweepAngle = 90;
_endPointCalculator.GetFinalPoint(startPoint, width, height, startAngle, sweepAngle);
//Returns X = 0, Y = 15
答案 1 :(得分:2)
1) Given this:
xStart = .25
yStart = .92
startAngle = 169.51
sweepAngle = 123.78
Rx = .436 // this is radius width
Ry = .593 // this is radius height
2) Calculations:
centerX = xStart - Rx * cos(startAngle)
centerY = yStart - Ry * sin(startAngle)
endAngle = startAngle + sweepAngle
xEnd = centerX + Rx * cos(endAngle)
yEnd = centerY + Ry * sin(endAngle)
所以,你的坐标是(xEnd,yEnd)。
答案 2 :(得分:1)
答案 3 :(得分:1)
“BlueRaja - Danny Pflughoeft”的答案是正确的,但是......它围绕半径点,必须使用 PointF 代替 Point:: >
PointF radius = new PointF((float)width / 2, (float)height / 2);
我对类进行了一些扩展,以便也有起点,以及每个方法的另一个签名:
public static class ChartHelper
{
public static PointF GetStartingPoint(float x, float y, double width, double height, double startAngle, double sweepAngle)
{
return GetStartingPoint(new PointF(x, y), width, height, startAngle, sweepAngle);
}
public static PointF GetStartingPoint(PointF startPoint, double width, double height, double startAngle, double sweepAngle)
{
PointF radius = new PointF((float)width / 2, (float)height / 2);
//Adjust the angles for the radius width/height
startAngle = UnstretchAngle(startAngle, radius);
//Calculate the starting point
return new PointF
{
X = (float)(Math.Cos(startAngle) + 1) * radius.X + startPoint.X,
Y = (float)(Math.Sin(startAngle) + 1) * radius.Y + startPoint.Y,
};
}
public static PointF GetFinalPoint(float x, float y, double width, double height, double startAngle, double sweepAngle)
{
return GetFinalPoint(new PointF(x, y), width, height, startAngle, sweepAngle);
}
public static PointF GetFinalPoint(PointF startPoint, double width, double height, double startAngle, double sweepAngle)
{
PointF radius = new PointF((float)width / 2, (float)height / 2);
double endAngle = startAngle + sweepAngle;
double sweepDirection = (sweepAngle < 0 ? -1 : 1);
//Adjust the angles for the radius width/height
startAngle = UnstretchAngle(startAngle, radius);
endAngle = UnstretchAngle(endAngle, radius);
//Determine how many times to add the sweep-angle to the start-angle
double angleMultiplier = (double)Math.Floor(2 * sweepDirection * (endAngle - startAngle) / Math.PI) + 1;
angleMultiplier = Math.Min(angleMultiplier, 4);
//Calculate the final resulting angle after sweeping
double calculatedEndAngle = startAngle + angleMultiplier * Math.PI / 2 * sweepDirection;
calculatedEndAngle = sweepDirection * Math.Min(sweepDirection * calculatedEndAngle, sweepDirection * endAngle);
//Calculate the final point
return new PointF
{
X = (float)(Math.Cos(calculatedEndAngle) + 1) * radius.X + startPoint.X,
Y = (float)(Math.Sin(calculatedEndAngle) + 1) * radius.Y + startPoint.Y,
};
}
private static double UnstretchAngle(double angle, PointF radius)
{
double radians = Math.PI * angle / 180.0;
if (Math.Abs(Math.Cos(radians)) < 0.00001 || Math.Abs(Math.Sin(radians)) < 0.00001)
return radians;
double stretchedAngle = Math.Atan2(Math.Sin(radians) / Math.Abs(radius.Y), Math.Cos(radians) / Math.Abs(radius.X));
double rotationOffset = (double)Math.Round(radians / (2.0 * Math.PI), MidpointRounding.AwayFromZero) -
(double)Math.Round(stretchedAngle / (2.0 * Math.PI), MidpointRounding.AwayFromZero);
return stretchedAngle + rotationOffset * Math.PI * 2.0;
}
}