我正面临一个受约束,等式和不等式的数值优化问题。似乎所有内容都在此任务的张量流中,请阅读诸如https://www.tensorflow.org/api_docs/python/tf/contrib/constrained_optimization之类的文档。
尽管我缺少一个最小的工作示例。我已经进行了广泛的谷歌搜索,但没有结果。谁能和我分享一些有用的资源?最好以渴望模式运行。
编辑:
我现在找到了https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/constrained_optimization
我仍然欢迎任何其他资源。
答案 0 :(得分:1)
您可以使用{> {3}},它适用于TF> 1.4。
这是我们要最小化的具体示例:
(x-2)^ 2 + y
s.t。
import tensorflow as tf
# Use the GitHub version of TFCO
# !pip install git+https://github.com/google-research/tensorflow_constrained_optimization
import tensorflow_constrained_optimization as tfco
class SampleProblem(tfco.ConstrainedMinimizationProblem):
def __init__(self, loss_fn, weights):
self._loss_fn = loss_fn
self._weights = weights
@property
def num_constraints(self):
return 4
def objective(self):
return loss_fn()
def constraints(self):
x, y = self._weights
sum_weights = x + y
lt_or_eq_one = sum_weights - 1
gt_or_eq_one = 1 - sum_weights
constraints = tf.stack([lt_or_eq_one, gt_or_eq_one, -x, -y])
return constraints
x = tf.Variable(0.0, dtype=tf.float32, name='x')
y = tf.Variable(0.0, dtype=tf.float32, name='y')
def loss_fn():
return (x - 2) ** 2 + y
problem = SampleProblem(loss_fn, [x, y])
optimizer = tfco.LagrangianOptimizer(
optimizer=tf.optimizers.Adagrad(learning_rate=0.1),
num_constraints=problem.num_constraints
)
var_list = [x, y] + problem.trainable_variables + optimizer.trainable_variables()
for i in range(10000):
optimizer.minimize(problem, var_list=var_list)
if i % 1000 == 0:
print(f'step = {i}')
print(f'loss = {loss_fn()}')
print(f'constraint = {(x + y).numpy()}')
print(f'x = {x.numpy()}, y = {y.numpy()}')