我正在使用scipy.minimize和COBYLA方法,但我似乎无法正确编写约束,因为当我检查目标函数的值时,它们不遵守这些约束。
基本上,目标函数接受一个数组作为参数,它必须遵循两个约束:
到目前为止,我用这种方式写了:
constraints = [{'type': 'ineq', 'fun': lambda x: 1 - sum(x)},
{'type': 'ineq', 'fun': lambda x: x[0]},
{'type': 'ineq', 'fun': lambda x: x[1]}]
但是,有时候我得到的值大于1 ......
以下是一个例子:
from __future__ import division
from math import pow, exp
import numpy as np
from scipy.optimize import minimize
nbStudy = 3
nbCYP = 2
raucObserved = [3.98, 2.0, 0.12]
IXmat = np.matrix([[-0.98, 0], [-0.3, -0.98], [7.7, 4.2]])
NBITER = 50
estimatedCR = []
raucPred = []
varR = [0.0085, 0.0048, 0.0110]
sdR = [0.0922, 0.0692, 0.1051]
cnstrts = [{'type': 'ineq', 'fun': lambda x: 1 - sum(x)},
{'type': 'ineq', 'fun': lambda x: x}]
def fun(CR):
dum = []
for i in range(nbStudy):
crix = 0
for j in range(nbCYP):
crix += CR[j] * IXmat[i, j]
raucPredicted = 1 / (1 + crix)
dum.append(pow((np.log(raucPredicted) - np.log(raucObservedBiased[i])), 2) / varR[i])
output = np.sum(dum)
return output
for iter in range(NBITER):
raucObservedBiased = []
for k in range(nbStudy):
raucObservedBiased.append(raucObserved[k] * exp(sdR[k] * np.random.normal()))
initialCR = np.matrix([[(1 / nbCYP) * np.random.uniform()], [(1 / nbCYP) * np.random.uniform()]])
output = minimize(fun, initialCR, method='COBYLA', constraints=cnstrts)
estimatedCR.append(output.x)
答案 0 :(得分:1)
您没有检查求解器是否收敛(output.success == True)---在您的情况下它不会收敛。如果没有收敛,则不能保证约束。
答案 1 :(得分:0)
显然是版本问题,此问题已得到解决。我使用的是Python 2.7和Scipy 0.13 ......