我在scipy的'COBYLA'
函数(v.0.11 build for cygwin)中使用了算法optimize.minimize
。我观察到在这种情况下似乎不使用参数bounds
。例如,简单的例子:
from scipy.optimize import minimize
def f(x):
return -sum(x)
minimize(f, x0=1, method='COBYLA', bounds=(-2,2))
返回:
status: 2.0
nfev: 1000
maxcv: 0.0
success: False
fun: -1000.0
x: array(1000.0)
message: 'Maximum number of function evaluations has been exceeded.'
而不是2
的预期x
。
有没有人察觉到同样的问题?是否存在已知错误或文档错误?在scipy 0.11文档中, COBYLA 算法不排除此选项。实际上,函数fmin_cobyla
没有bounds
参数。
谢谢你的任何提示。
答案 0 :(得分:6)
您可以以约束的形式制定界限
import scipy
#function to minimize
def f(x):
return -sum(x)
#initial values
initial_point=[1.,1.,1.]
#lower and upper bound for variables
bounds=[ [-2,2],[-1,1],[-3,3] ]
#construct the bounds in the form of constraints
cons = []
for factor in range(len(bounds)):
lower, upper = bounds[factor]
l = {'type': 'ineq',
'fun': lambda x, lb=lower, i=factor: x[i] - lb}
u = {'type': 'ineq',
'fun': lambda x, ub=upper, i=factor: ub - x[i]}
cons.append(l)
cons.append(u)
#similarly aditional constrains can be added
#run optimization
res = scipy.optimize.minimize(f,initial_point,constraints=cons,method='COBYLA')
#print result
print res
请注意,最小化函数会将设计变量赋予函数。在这种情况下,给出3个输入变量,其中3个上限和下限。结果产生:
fun: -6.0
maxcv: -0.0
message: 'Optimization terminated successfully.'
nfev: 21
status: 1
success: True
x: array([ 2., 1., 3.])
答案 1 :(得分:4)
原始 COBYLA(2) FORTRAN算法不显式支持变量边界,您必须在一般约束的上下文中制定边界。
查看 SciPy minimize
界面here的当前源代码,很明显 SciPy 中尚未采取任何措施处理这个限制。
因此,为了在 SciPy minimize
函数中为 cobyla 算法应用 bounds ,您需要制定变量绑定为不等式约束,并将它们包含在关联的约束参数中。
(源代码摘录)
// bounds set to anything else than None yields warning
if meth is 'cobyla' and bounds is not None:
warn('Method %s cannot handle bounds.' % method,
RuntimeWarning)
...
// No bounds argument in the internal call to the COBYLA function
elif meth == 'cobyla':
return _minimize_cobyla(fun, x0, args, constraints, **options)