ValueError:操作数不能与形状>(400,2)(400,)一起广播

时间:2019-01-14 08:06:21

标签: python-3.x numpy machine-learning speech-recognition feature-extraction

  

亲爱的关注对象:我正在使用PLP从wav中提取功能,   Pyhton 3.6 -Anaconda Spyder)执行后,我在此遇到错误   线

     

文件   “ C:\ ProgramData \ Anaconda3 \ lib \ site-packages \ sidekit \ frontend \ features.py”,   第399行,在power_spectrum中,ahan = framed [start:stop,:] *窗口

     

ValueError:操作数不能与形状一起广播   (400,2)(400,)

#!usr/bin/python
import numpy.matlib
import scipy
from scipy.fftpack.realtransforms import dct
from sidekit.frontend.vad import pre_emphasis
from sidekit.frontend.io import *
from sidekit.frontend.normfeat import *
from sidekit.frontend.features import *
import scipy.io.wavfile as wav
import numpy as np



def readWavFile(wav):
        #given a path from the keyboard to read a .wav file
        #wav = raw_input('Give me the path of the .wav file you want to read: ')
        inputWav = 'C:/Speech_Processing/2-Speech_Signal_Processing_and_Classification-master/feature_extraction_techniques'+wav
        return inputWav
#reading the .wav file (signal file) and extract the information we need
def initialize(inputWav):
        rate , signal  = wav.read(readWavFile(inputWav)) # returns a wave_read object , rate: sampling frequency
        sig = wave.open(readWavFile(inputWav))
        # signal is the numpy 2D array with the date of the .wav file
        # len(signal) number of samples
        sampwidth = sig.getsampwidth()
        print ('The sample rate of the audio is: ',rate)
        print ('Sampwidth: ',sampwidth)
        return signal ,  rate
def PLP():
        folder = input('Give the name of the folder that you want to read data: ')
        amount = input('Give the number of samples in the specific folder: ')
        for x in range(1,int(amount)+1):
                wav = '/'+folder+'/'+str(x)+'.wav'
                print (wav)
                #inputWav = readWavFile(wav)
                signal,rate = initialize(wav)
                #returns PLP coefficients for every frame
                plp_features = plp(signal,rasta=True)
                meanFeatures(plp_features[0])
#compute the mean features for one .wav file (take the features for every frame and make a mean for the sample)
def meanFeatures(plp_features):
        #make a numpy array with length the number of plp features
        mean_features=np.zeros(len(plp_features[0]))
        #for one input take the sum of all frames in a specific feature and divide them with the number of frames
        for x in range(len(plp_features)):
                for y in range(len(plp_features[x])):
                        mean_features[y]+=plp_features[x][y]
        mean_features = (mean_features / len(plp_features))
        print (mean_features)

def main():
        PLP()

main()

0 个答案:

没有答案