此代码将与计量经济学工具箱一起运行
model = arima('Constant',0.5,'AR',{0.9999},'Variance',.4);
rng('default')
Y = simulate(model,50);
figure
plot(Y)
xlim([0,50])
title('Simulated AR(1) Process')
rng('default')
Y = simulate(model,50,'NumPaths',1000);
Y1=Y(:,1);
for ii = 1:50
Mdl = arima(1,0,0);
EstMdl = estimate(Mdl, [Y(:,ii)]);
end
如何为每次迭代存储EstMdl中的p值(即具有5个pvalue的向量)?
答案 0 :(得分:3)
使用summarize
(需要R2018a以上)来获得estimate
的结果。
在此处显示一次迭代的结果:
>> ii=1;
>> Mdl = arima(1,0,0);
>> EstMdl = estimate(Mdl, [Y(:,ii)]);
ARIMA(1,0,0) Model (Gaussian Distribution):
Value StandardError TStatistic PValue
_______ _____________ __________ __________
Constant 622.14 427.99 1.4536 0.14605
AR{1} 0.87561 0.085586 10.231 1.4432e-24
Variance 0.37122 0.079507 4.669 3.0263e-06
>> Results = summarize(EstMdl);
>> PValues = Results.Table.PValue
PValues =
0.1460
0.0000
0.0000