我正在使用XGBClassifier来预测用户是否会点击广告。
我正在寻找建议,以增加对少数民族班的回忆。
关于我的数据:
1. Total rows: 1,266,267
2. Total clicks: 1960 rows (0.15%) => imbalanced dataset
3. Features used:
- Num of views
- Device used
- Time (categorized into 6 buckets)
- Ad category
- Site id (there are 338 unique site id)
- User features (there are 583 unique features)(Note: features available for 60% of the data)
一键热后,总列/特征为943。
最终数据为稀疏矩阵格式。
模型结果:
Model | AUC | Logloss | Recall* | Precision*
------------------------|--------|---------|---------|-----------
Using all 943 features | 0.7359 | 0.05392 | 0.47 | 0.85
----------------------------------------------------------------
Clustered user features | 0.7548 | 0.05470 | 0.51 | 0.80
into groups |
Final model features |
num=361 |
----------------------------------------------------------------
*recall and precision refers to the minority class (click=1).
**recall, precision for majority class (click=0) is 1.
为了增加不平衡数据集中的召回率,我尝试过:
问题:
1. Is my model too complex that it can't generalise well?
2. I have compared my AUC with results from other research papers.
Research AUC ranges from 0.7 to 0.82.
But, none of them showed the recall/confusion matrix.
To anyone that has done CTR prediction before, can I know your recall/confusion matrix?
3. Is there other ways that can help increase recall for imbalanced dataset?
答案 0 :(得分:0)
此外,建议您尝试其他操作,例如:如果数据不平衡,则使用SMOTE(50%/ 50%)平衡,如果您有很多分类变量,则尝试其他类型的编码...等等。