Python日期系列生成

时间:2019-01-04 20:43:03

标签: python pandas

在python中,给定开始日期:2018年11月2日(星期五), 我需要生成一个带有一系列每周日期的数据框,并将它们标记如下: 基本上每个日期对从一个星期五到下个星期四,跨度为1周

START_DT    END_DT        WEEK_IND  MONTH_IND(same month as END_DT)
2018-11-01  2018-11-08     1         201811
2018-11-09  2018-11-15     2         201811
2018-11-16  2018-11-22     3         201811
2018-11-23  2018-11-29     4         201811
2018-11-30  2018-12-06     1         201812( WEEK_IND resets as it is a new month)
...
...

有人可以指出我正确的方向吗?

3 个答案:

答案 0 :(得分:3)

您可以执行以下操作:

services.AddAuthentication
  (
     IISDefaults.AuthenticationScheme
  ).AddJwtBearer("Bearer", options =>
  {
    options.TokenValidationParameters = new TokenValidationParameters
    {
      ValidateAudience = false,
      ValidateIssuer = false,

      ValidateIssuerSigningKey = true,
      IssuerSigningKey = new SymmetricSecurityKey(Encoding.UTF8.GetBytes("someKey")),

      ValidateLifetime = true,
    };
  }
);

输出

import pandas as pd

start = pd.date_range(start='20181102', end='20181231', freq='1w-FRI')
end = start + pd.DateOffset(6)

df = pd.DataFrame({ 'start': start, 'end': end, 'month': end.strftime('%Y%m')}, columns=['start', 'end', 'month'])
df['week'] = df.groupby('month').cumcount() + 1

print(df)

答案 1 :(得分:3)

echo (new \DateTime('2019-01-17T10:00:00-05:00'))->format('P');

输出

df = pd.DataFrame()
df['START_DT'] = pd.date_range(start='2018-11-02', freq = 'W-FRI', periods = 10)
df['END_DT'] = df['START_DT']+ pd.DateOffset(6)
df['MONTH_IND'] = df['END_DT'].dt.strftime('%Y%m')
df['WEEK_IND'] = df.groupby(by = 'MONTH_IND').cumcount()+1

答案 2 :(得分:2)

使用pd.tseries

它具有Week偏移量,用于生成接受工作日参数的每周数据,并导致生成的日期始终位于一周的特定日期-

from pandas.tseries.offsets import *
pd.to_datetime(df['START_DT']) + Week(weekday=3)

输出

0   2018-11-08
1   2018-11-15
2   2018-11-22
3   2018-11-29
4   2018-12-06