相当新的Python并且有一个小问题...
我有一些代码需要约会并返回一系列具有前瞻性的工作日。到目前为止都很好。唯一的问题是在输出中我看起来像是与每个日期相关的计数,所以例如我有这个:
0 2001-01-01
1 2001-01-02
2 2001-01-03
3 2001-01-04
4 2001-01-05
5 2001-01-08
6 2001-01-09
7 2001-01-10
8 2001-01-11
9 2001-01-12
10 2001-01-15
当我真的想看时:
2001-01-01
2001-01-02
2001-01-03
2001-01-04
2001-01-05
2001-01-08
2001-01-09
2001-01-10
2001-01-11
2001-01-12
2001-01-15
请参阅下面的代码。非常感谢任何帮助。
def getBusinessDayCalender(startDate,insampleLength,outsampleLength):
print('getBusinessDayCalender')
from pandas.tseries.offsets import CustomBusinessDay
weekmask_europe = 'Mon Tue Wed Thu Fri'
bday_europe = CustomBusinessDay(weekmask=weekmask_europe)
dt = pd.datetime(startDate.year, startDate.month, startDate.day)
dts = pd.date_range(dt, periods=insampleLength+outsampleLength, freq=bday_europe)
dates = pd.Series(dts)
print(dates)
return dates
答案 0 :(得分:0)
这是黑客攻击。但它会很好用。
>>> data_list
'0 2001-01-01\n1 2001-01-02\n2 2001-01-03\n3 2001-01-04\n4 2001-01-05\n5 2001-01-08\n6 2001-01-09\n7 2001-01-10\n8 2001-01-11\n9 2001-01-12\n10 2001-01-15'
>>> [data[data.index('-') - 4:] for data in data_list.split('\n')]
['2001-01-01', '2001-01-02', '2001-01-03', '2001-01-04', '2001-01-05', '2001-01-08', '2001-01-09', '2001-01-10', '2001-01-11', '2001-01-12', '2001-01-15']
答案 1 :(得分:0)
所有系列(和数据框)都在Pandas中编入索引,请参阅docs.
In [2]: s = pd.Series([0,3,1])
s
Out[2]: 0 0
1 3
2 1
dtype: int64
In [3]: s[1]
Out[3]: 3
您的真实数据位于第二列中。