如何将行分组并在python中的一列中求和

时间:2019-01-02 12:07:43

标签: python pandas

我有一个用制表符分隔的文件,例如以下示例:

小例子:

chr5    112312630   112312650   31  chr5    112312630   112321662   DCP2    ENST00000543319.1
chr5    137676883   137676900   123 chr5    137676883   137676949   FAM53C  ENST00000434981.2
chr5    137676900   137676949   42  chr5    137676883   137676949   FAM53C  ENST00000434981.2
chr5    139944400   139944450   92  chr5    139944064   139946344   SLC35A4 ENST00000323146.3
chr5    139945450   139945500   77  chr5    139944064   139946344   SLC35A4 ENST00000323146.3

我想基于5th6th7th列对行进行分组,并对每组中4th列的值求和。 这是预期的输出:

预期输出:

chr5    112312630   112312650   31  chr5    112312630   112321662   DCP2    ENST00000543319.1
chr5    137676900   137676949   165 chr5    137676883   137676949   FAM53C  ENST00000434981.2
chr5    139944400   139944450   169 chr5    139944064   139946344   SLC35A4 ENST00000323146.3

我正在尝试使用以下命令在python中执行此操作,但它实际上无法正常工作。你知道如何解决吗?

import pandas as pd
df = pd.read_csv('myfile.txt', sep='\t', header=None)
df = df.groupby(5, 6, 7, 8).sum()

4 个答案:

答案 0 :(得分:1)

您只需要对cols进行分组:

df.groupby([5,6,7,8]).sum()

答案 1 :(得分:1)

您需要通过DataFrameGroupBy.agg进行聚合,并使用具有聚合功能的列的字典,此处所有与cols不同的列均通过lastfirst进行聚合,只有{{1} }列由4聚合:

sum

cols = [5, 6, 7, 8]
d = dict.fromkeys(df.columns.difference(cols), 'last')
d[3] = 'sum'
print (d)
{0: 'last', 1: 'last', 2: 'last', 3: 'sum', 4: 'last'}

df = df.groupby([5, 6, 7, 8], as_index=False).agg(d).reindex(columns=df.columns)
print (df)
      0          1          2    3     4          5          6        7  \
0  chr5  112312630  112312650   31  chr5  112312630  112321662     DCP2   
1  chr5  137676900  137676949  165  chr5  137676883  137676949   FAM53C   
2  chr5  139945450  139945500  169  chr5  139944064  139946344  SLC35A4   

                   8  
0  ENST00000543319.1  
1  ENST00000434981.2  
2  ENST00000323146.3  

答案 2 :(得分:0)

尝试一下:

df.groupby(['column'])[['another column']].sum()

它按column分组并相加another column。 我使用[]是为了使您了解可以按多个列进行分组,例如:

df.groupby(['column1', 'column2'])

答案 3 :(得分:0)

输入数据框:仅考虑前3行,

data = {'col1': ['chr5', 'chr5', 'chr5'],
        'col2': [112312630,137676883,137676900],
        'col3': [112312650,137676900,137676949],
        'col4': [31, 123,42],
        'col5': ['chr5', 'chr5', 'chr5'],
        'col6': [112312630 ,137676883 ,137676883 ],
        'col7': [112321662, 137676949, 137676949],
        'col8': ['DCP2', 'FAM53C', 'FAM53C'],
       'col9': ['ENST00000543319.1', 'ENST00000434981.2', 'ENST00000434981.2']
       }

df = pd.DataFrame(data = data)
df 

这样做,

cols = ['col5', 'col6', 'col7', 'col8']
col_sum = df.groupby(cols)['col4'].sum()
col_sum

输出:这是一个多级数据框。最后一列是您的输出,

col5  col6       col7       col8  
chr5  112312630  112321662  DCP2       31
      137676883  137676949  FAM53C    165