我遇到了以下来自here的代码:
using System;
using System.Drawing;
class Program
{
static void Main()
{
Bitmap img1 = new Bitmap("Lenna50.jpg");
Bitmap img2 = new Bitmap("Lenna100.jpg");
if (img1.Size != img2.Size)
{
Console.Error.WriteLine("Images are of different sizes");
return;
}
float diff = 0;
for (int y = 0; y < img1.Height; y++)
{
for (int x = 0; x < img1.Width; x++)
{
diff += (float)Math.Abs(img1.GetPixel(x, y).R - img2.GetPixel(x, y).R) / 255;
diff += (float)Math.Abs(img1.GetPixel(x, y).G - img2.GetPixel(x, y).G) / 255;
diff += (float)Math.Abs(img1.GetPixel(x, y).B - img2.GetPixel(x, y).B) / 255;
}
}
Console.WriteLine("diff: {0} %", 100 * diff / (img1.Width * img1.Height * 3));
}
}
不幸的是,这确实很慢。有谁知道计算两幅图像之间距离的更快方法?谢谢!
还要提供更多上下文。我正在做这样的事情:
https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/
我开发了SVG,然后将其转换为位图并与目标图像进行比较。
刚遇到aforgenet库-例如,请参见:
PS:
我开始使用LockBits重写以上内容。下面的代码是我当前的尝试,但是我有点卡住了。请注意,bmp1是“目标图片”,并且不会真正改变-因此可以将复制排除在外/只需执行一次即可。将位图bmp2传入并与bmp1进行比较(有100个bmp2s)。最终,我想使用某个距离(例如字节的欧几里得距离?)来确定bmp1和bmp2之间的相似性。关于此以及如何加快代码的任何指针将不胜感激。谢谢!
public double Compare(Bitmap bmp1, Bitmap bmp2)
{
BitmapData bitmapData1 = bmp1.LockBits(new Rectangle(0, 0, bmp1.Width, bmp1.Height), ImageLockMode.ReadWrite, bmp1.PixelFormat);
BitmapData bitmapData2 = bmp2.LockBits(new Rectangle(0, 0, bmp2.Width, bmp2.Height), ImageLockMode.ReadWrite, bmp2.PixelFormat);
IntPtr ptr1 = bitmapData1.Scan0;
int bytes1 = bitmapData1.Stride * bmp1.Height;
byte[] rgbValues1 = new byte[bytes1];
byte[] r1 = new byte[bytes1 / 3];
byte[] g1 = new byte[bytes1 / 3];
byte[] b1 = new byte[bytes1 / 3];
Marshal.Copy(ptr1, rgbValues1, 0, bytes1);
bmp1.UnlockBits(bitmapData1);
IntPtr ptr2 = bitmapData2.Scan0;
int bytes2 = bitmapData2.Stride * bmp2.Height;
byte[] rgbValues2 = new byte[bytes2];
byte[] r2 = new byte[bytes2 / 3];
byte[] g2 = new byte[bytes2 / 3];
byte[] b2 = new byte[bytes2 / 3];
Marshal.Copy(ptr2, rgbValues2, 0, bytes2);
bmp2.UnlockBits(bitmapData2);
int stride = bitmapData1.Stride;
for (int column = 0; column < bitmapData1.Height; column++)
{
for (int row = 0; row < bitmapData1.Width; row++)
{
//????
}
}
return 0;
}
PPS:
我(认为我)取得了一些进步。以下代码似乎有效:
using System.Drawing;
using System.Drawing.Imaging;
using Color = System.Drawing.Color;
namespace ClassLibrary1
{
public unsafe class BitmapComparer : IBitmapComparer
{
private readonly Color[] _targetBitmapColors;
private readonly int _width;
private readonly int _height;
private readonly int _maxPointerLength;
private readonly PixelFormat _pixelFormat;
public BitmapComparer(Bitmap targetBitmap)
{
_width = targetBitmap.Width;
_height = targetBitmap.Height;
_maxPointerLength = _width * _height;
_pixelFormat = targetBitmap.PixelFormat;
_targetBitmapColors = new Color[_maxPointerLength];
var bData = targetBitmap.LockBits(new Rectangle(0, 0, _width, _height), ImageLockMode.ReadWrite, _pixelFormat);
var scan0 = (byte*) bData.Scan0.ToPointer();
for (var i = 0; i < _maxPointerLength; i += 4)
{
_targetBitmapColors[i] = Color.FromArgb(scan0[i + 2], scan0[i + 1], scan0[i + 0]);
}
targetBitmap.UnlockBits(bData);
}
// https://rogerjohansson.blog/2008/12/09/genetic-programming-mona-lisa-faq/
public double Compare(Bitmap bitmapToCompareWith)
{
var bData = bitmapToCompareWith.LockBits(new Rectangle(0, 0, _width, _height), ImageLockMode.ReadWrite, _pixelFormat);
var scan0 = (byte*) bData.Scan0.ToPointer();
double distance = 0;
for (var i = 0; i < _maxPointerLength; i += 4)
{
distance +=
( ((_targetBitmapColors[i].R - scan0[i + 2]) * (_targetBitmapColors[i].R - scan0[i + 2]))
+ ((_targetBitmapColors[i].G - scan0[i + 1]) * (_targetBitmapColors[i].G - scan0[i + 1]))
+ ((_targetBitmapColors[i].B - scan0[i + 0]) * (_targetBitmapColors[i].B - scan0[i + 0])));
}
bitmapToCompareWith.UnlockBits(bData);
return distance;
}
}
}
答案 0 :(得分:1)
始终使用所有像素将非常耗时。如果使用随机选择的图像像素样本怎么办。另外,您可以应用分层图像粒度。这样,您将获得有关图像中显示的详细信息的更多信息。
我也在从事类似的项目。在GitHub上可以使用Ellipses-Image-Approximator的名称。
类似这样的东西:
package eu.veldsoft.ellipses.image.approximator;
import java.awt.image.BufferedImage;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
/**
* Compare to raster images by using Euclidean distance between the pixels but
* in probabilistic sampling on hierarchical image detailization.
*
* @author Todor Balabanov
*/
class HierarchicalProbabilisticImageComparator implements ImageComparator {
/** A pseudo-random number generator instance. */
private static final Random PRNG = new Random();
/**
* Euclidean distance color comparator instance.
*/
private static final ColorComparator EUCLIDEAN = new EuclideanColorComparator();
/** Recursive descent depth level. */
private int depthLevel = 1;
/**
* Size of the sample in percentages from the size of the population (from
* 0.0 to 1.0).
*/
private double samplePercent = 0.1;
/** A supportive array for the first image pixels. */
private int aPixels[] = null;
/** A supportive array for the second image pixels. */
private int bPixels[] = null;
/**
* Constructor without parameters for default members' values.
*/
public HierarchicalProbabilisticImageComparator() {
this(1, 0.1);
}
/**
* Constructor with all parameters.
*
* @param depthLevel
* Recursive descent depth level.
* @param samplePercent
* Size of the sample in percentages from the size of the
* population (from 0.0 to 1.0).
*/
public HierarchicalProbabilisticImageComparator(int depthLevel,
double samplePercent) {
super();
this.depthLevel = depthLevel;
this.samplePercent = samplePercent;
}
private double distance(int width, int level, int minX, int minY, int maxX,
int maxY) {
/*
* At the bottom of the recursive descent, distance is zero, and
* descending is canceled.
*/
if (level > depthLevel) {
return 0;
}
/* Rectangle's boundaries should be observed. */
if (maxX <= minX || maxY <= minY) {
return 0;
}
/*
* Sample size calculated according formula.
*
* https://www.surveymonkey.com/mp/sample-size-calculator/
*/
int sampleSize = (int) ((maxX - minX) * (maxY - minY) * samplePercent);
/* Generate unique indices of pixels with the size of the sample. */
Set<Integer> indices = new HashSet<Integer>();
while (indices.size() < sampleSize) {
int x = minX + PRNG.nextInt(maxX - minX + 1);
int y = minY + PRNG.nextInt(maxY - minY + 1);
indices.add(y * width + x);
}
/* The Euclidean distance of the randomly selected pixels. */
double sum = 0;
for (int index : indices) {
sum += EUCLIDEAN.distance(aPixels[index], bPixels[index]);
}
/* Do a recursive descent. */
return (sum / sampleSize) * level
+ distance(width, level + 1, minX, minY,
maxX - (maxX - minX) / 2, maxY - (maxY - minY) / 2)
+ distance(width, level + 1, maxX - (maxX - minX) / 2, minY,
maxX, maxY - (maxY - minY) / 2)
+ distance(width, level + 1, minX, maxY - (maxY - minY) / 2,
maxX - (maxX - minX) / 2, maxY)
+ distance(width, level + 1, maxX - (maxX - minX) / 2,
maxY - (maxY - minY) / 2, maxX, maxY);
}
/**
* {@inheritDoc}
*/
@Override
public double distance(BufferedImage a, BufferedImage b) {
if (a.getWidth() != b.getWidth()) {
throw new RuntimeException("Images width should be identical!");
}
if (a.getHeight() != b.getHeight()) {
throw new RuntimeException("Images height should be identical!");
}
aPixels = a.getRGB(0, 0, a.getWidth(), a.getHeight(), null, 0,
a.getWidth());
bPixels = b.getRGB(0, 0, b.getWidth(), b.getHeight(), null, 0,
b.getWidth());
/* Do a recursive calculation. */
return distance(Math.min(a.getWidth(), b.getWidth()), 1, 0, 0,
Math.min(a.getWidth() - 1, b.getWidth() - 1),
Math.min(a.getHeight() - 1, b.getHeight() - 1));
}
}
答案 1 :(得分:0)
正如其他人指出的那样,您可以使用BitMap.LockBits
并使用指针代替GetPixel
。以下代码的运行速度比原始方法快200倍:
static float CalculateDifference(Bitmap bitmap1, Bitmap bitmap2)
{
if (bitmap1.Size != bitmap2.Size)
{
return -1;
}
var rectangle = new Rectangle(0, 0, bitmap1.Width, bitmap1.Height);
BitmapData bitmapData1 = bitmap1.LockBits(rectangle, ImageLockMode.ReadOnly, bitmap1.PixelFormat);
BitmapData bitmapData2 = bitmap2.LockBits(rectangle, ImageLockMode.ReadOnly, bitmap2.PixelFormat);
float diff = 0;
var byteCount = rectangle.Width * rectangle.Height * 3;
unsafe
{
// scan to first byte in bitmaps
byte* pointer1 = (byte*)bitmapData1.Scan0.ToPointer();
byte* pointer2 = (byte*)bitmapData2.Scan0.ToPointer();
for (int x = 0; x < byteCount; x++)
{
diff += (float)Math.Abs(*pointer1 - *pointer2) / 255;
pointer1++;
pointer2++;
}
}
bitmap1.UnlockBits(bitmapData1);
bitmap2.UnlockBits(bitmapData2);
return 100 * diff / byteCount;
}