我正在与DFS求解器一起开发8个益智游戏。该代码从树中打印所有子项,直到正确的状态为止,但是我只想打印正确的解决方案。
我的输出:
120
345
678
125
340
678
102
345
678
125
348
670
125
304
678
142
305
678
012
345
678
预期输出:
120
345
678
102
345
678
012
345
678
代码:
public class puzzle {
public static LinkedHashSet<String> OPEN = new LinkedHashSet<String>();
public static HashSet<String> CLOSED = new HashSet<String>();
public static boolean STATE = false;
public static void main(String args[]) {
int statesVisited = 0;
String start = "120345678";
String goal = "012345678";
String X = "";
String temp = "";
OPEN.add(start);
while (OPEN.isEmpty() == false && STATE == false) {
X = OPEN.iterator().next();
OPEN.remove(X);
print(X);
int pos = X.indexOf('0'); // get position of ZERO or EMPTY SPACE
if (X.equals(goal)) {
System.out.println("SUCCESS");
STATE = true;
} else {
// generate children
CLOSED.add(X);
temp = up(X, pos);
if (!(temp.equals("-1")))
OPEN.add(temp);
temp = down(X, pos);
if (!(temp.equals("-1")))
OPEN.add(temp);
temp = left(X, pos);
if (!(temp.equals("-1")))
OPEN.add(temp);
temp = right(X, pos);
if (!(temp.equals("-1")))
OPEN.add(temp);
}
}
}
/*
* MOVEMENT UP
*/
public static String up(String s, int p) {
String str = s;
if (!(p < 3)) {
char a = str.charAt(p - 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p - 3)) + '0' + newS.substring(p - 2);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT DOWN
*/
public static String down(String s, int p) {
String str = s;
if (!(p > 5)) {
char a = str.charAt(p + 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p + 3)) + '0' + newS.substring(p + 4);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT LEFT
*/
public static String left(String s, int p) {
String str = s;
if (p != 0 && p != 3 && p != 7) {
char a = str.charAt(p - 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p - 1)) + '0' + newS.substring(p);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT RIGHT
*/
public static String right(String s, int p) {
String str = s;
if (p != 2 && p != 5 && p != 8) {
char a = str.charAt(p + 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p + 1)) + '0' + newS.substring(p + 2);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
public static void print(String s) {
System.out.println(s.substring(0, 3));
System.out.println(s.substring(3, 6));
System.out.println(s.substring(6, 9));
System.out.println();
}
}
答案 0 :(得分:1)
DFS返回找到的第一个路径。要获得最短路径,请使用BFS。
您可以使用地图
private static Map<String, List<String>> paths = new HashMap<>();
将每个节点(状态)映射到导致其的路径:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
public class puzzle {
private static LinkedHashSet<String> OPEN = new LinkedHashSet<>();
private static HashSet<String> CLOSED = new HashSet<>();
private static Map<String, List<String>> paths = new HashMap<>();
public static boolean STATE = false;
public static void main(String args[]) {
String start = "120345678";
String goal = "012345678";
String X = "";
String temp = "";
OPEN.add(start);
paths.put(start, Arrays.asList(start));
while (OPEN.isEmpty() == false && STATE == false) {
X = OPEN.iterator().next();
OPEN.remove(X);
print(X);
int pos = X.indexOf('0'); // get position of ZERO or EMPTY SPACE
if (X.equals(goal)) {
System.out.println("SUCCESS" +"\n" + paths.get(X));
STATE = true;
} else {
// generate children
CLOSED.add(X);
temp = up(X, pos);
if (!temp.equals("-1")) {
OPEN.add(temp);
updatePaths(temp, paths.get(X));
}
temp = down(X, pos);
if (!temp.equals("-1")) {
OPEN.add(temp);
updatePaths(temp, paths.get(X));
}
temp = left(X, pos);
if (!temp.equals("-1")) {
OPEN.add(temp);
updatePaths(temp, paths.get(X));
}
temp = right(X, pos);
if (!temp.equals("-1")) {
OPEN.add(temp);
updatePaths(temp, paths.get(X));
}
}
}
}
static void updatePaths(String s, List<String> path){
if(paths.containsKey(s)) return;
List<String> newPath = new ArrayList<>(path);
newPath.add(s);
paths.put(s, newPath);
}
/*
* MOVEMENT UP
*/
public static String up(String s, int p) {
String str = s;
if (!(p < 3)) {
char a = str.charAt(p - 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, p - 3) + '0' + newS.substring(p - 2);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT DOWN
*/
public static String down(String s, int p) {
String str = s;
if (!(p > 5)) {
char a = str.charAt(p + 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, p + 3) + '0' + newS.substring(p + 4);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT LEFT
*/
public static String left(String s, int p) {
String str = s;
if (p != 0 && p != 3 && p != 7) {
char a = str.charAt(p - 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, p - 1) + '0' + newS.substring(p);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
/*
* MOVEMENT RIGHT
*/
public static String right(String s, int p) {
String str = s;
if (p != 2 && p != 5 && p != 8) {
char a = str.charAt(p + 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, p + 1) + '0' + newS.substring(p + 2);
}
// Eliminates child of X if its on OPEN or CLOSED
if (!OPEN.contains(str) && CLOSED.contains(str) == false)
return str;
else
return "-1";
}
public static void print(String s) {
System.out.println(s.substring(0, 3));
System.out.println(s.substring(3, 6));
System.out.println(s.substring(6, 9));
System.out.println();
}
}
答案 1 :(得分:1)
我们需要某种方式保存步骤之间的关系,以便仅从成功路径中查找步骤。
这是我的解决方法:
public class Puzzle {
public static LinkedHashSet<Step> open = new LinkedHashSet<>();
public static HashSet<Step> closed = new HashSet<>();
public static boolean problemSolved = false;
private static class Step {
final String data;
Step previous = null;
Step(String data) {
this.data = data;
}
Step(Step previous, String data) {
this.previous = previous;
this.data = data;
}
public String getData() {
return data;
}
public Step getPrevious() {
return previous;
}
@Override
public String toString() {
return new StringBuilder()
.append(data.substring(0, 3))
.append("\r\n")
.append(data.substring(3, 6))
.append("\r\n")
.append(data.substring(6, 9))
.toString();
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (!(obj instanceof Step)) {
return false;
}
if (obj == this) {
return true;
}
return this.getData().equals(((Step) obj).getData());
}
@Override
public int hashCode() {
return this.getData().hashCode();
}
}
public static void main(String args[]) {
int statesVisited = 0;
Step startStep = new Step("120345678");
Step goalStep = new Step("012345678");
Step currentStep;
open.add(startStep);
while (!open.isEmpty() && !problemSolved) {
currentStep = open.iterator().next();
open.remove(currentStep);
// print(currentStep);
if (currentStep.equals(goalStep)) {
System.out.println("SUCCESS PATH: \r\n");
printSuccessPath(
getSuccessPathFromFinishStep(currentStep) // here currentStep is finish step
);
problemSolved = true;
} else {
// generate children
closed.add(currentStep);
Step nextStep = up(currentStep);
if (nextStep != null) {
open.add(nextStep);
}
nextStep = down(currentStep);
if (nextStep != null) {
open.add(nextStep);
}
nextStep = left(currentStep);
if (nextStep != null) {
open.add(nextStep);
}
nextStep = right(currentStep);
if (nextStep != null) {
open.add(nextStep);
}
}
}
}
/*
* MOVEMENT UP
*/
public static Step up(Step step) {
int p = step.getData().indexOf('0');
String str = step.getData();
if (!(p < 3)) {
char a = str.charAt(p - 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p - 3)) + '0' + newS.substring(p - 2);
}
Step nexStep = new Step(step, str); // Creates new step with step as previous one
// Eliminates child of X if its on open or closed
if (!open.contains(nexStep) && !closed.contains(nexStep))
return nexStep;
else
return null;
}
/*
* MOVEMENT DOWN
*/
public static Step down(Step step) {
int p = step.getData().indexOf('0');
String str = step.getData();
if (!(p > 5)) {
char a = str.charAt(p + 3);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p + 3)) + '0' + newS.substring(p + 4);
}
Step nexStep = new Step(step, str); // Creates new step with step as previous one
// Eliminates child of X if its on open or closed
if (!open.contains(nexStep) && !closed.contains(nexStep))
return nexStep;
else
return null;
}
/*
* MOVEMENT LEFT
*/
public static Step left(Step step) {
int p = step.getData().indexOf('0');
String str = step.getData();
if (p != 0 && p != 3 && p != 7) {
char a = str.charAt(p - 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p - 1)) + '0' + newS.substring(p);
}
Step nexStep = new Step(step, str); // Creates new step with step as previous one
// Eliminates child of X if its on open or closed
if (!open.contains(nexStep) && !closed.contains(nexStep))
return nexStep;
else
return null;
}
/*
* MOVEMENT RIGHT
*/
public static Step right(Step step) {
int p = step.getData().indexOf('0');
String str = step.getData();
if (p != 2 && p != 5 && p != 8) {
char a = str.charAt(p + 1);
String newS = str.substring(0, p) + a + str.substring(p + 1);
str = newS.substring(0, (p + 1)) + '0' + newS.substring(p + 2);
}
Step nexStep = new Step(step, str); // Creates new step with step as previous one
// Eliminates child of X if its on open or closed
if (!open.contains(nexStep) && !closed.contains(nexStep))
return nexStep;
else
return null;
}
private static void print(Step s) {
System.out.println(s);
System.out.println();
}
private static void printSuccessPath(List<Step> successPath) {
for (Step step : successPath) {
print(step);
}
}
private static List<Step> getSuccessPathFromFinishStep(Step finishStep) {
LinkedList<Step> successPath = new LinkedList<>();
Step step = finishStep;
while (step != null) {
successPath.addFirst(step);
step = step.getPrevious();
}
return successPath;
}
}
我已经对您的代码进行了一些重构。并引入了新的类 Step ,它使我们可以保存当前步骤与上一步之间的关系。
逻辑有点复杂,但是如果您不清楚某些事情,请随时询问其他问题
顺便说一下,结果如下:
SUCCESS PATH:
120
345
678
102
345
678
012
345
678
答案 2 :(得分:1)
因此,一个干净的解决方案可以满足您的要求:
package basic;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Set;
import java.util.Stack;
public class Puzzle {
private static class Node {
private final Node previous;
private final String data;
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((data == null) ? 0 : data.hashCode());
return result;
}
public Node getPrevious() {
return previous;
}
public String getData() {
return data;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Node other = (Node) obj;
if (data == null) {
if (other.data != null)
return false;
} else if (!data.equals(other.data))
return false;
return true;
}
public Node(String data) {
this.data = data;
this.previous = null;
}
public Node(String data, Node previous) {
this.data = data;
this.previous = previous;
}
}
public static void main(String args[]) {
Queue<Node> open = new LinkedList<>();
Set<Node> closed = new HashSet<>();
Node start = new Node("120345678");
Node goal = new Node("012345678");
open.add(start);
boolean solving = true;
while (!open.isEmpty() && solving) {
Node current = open.poll();
int pos = current.getData().indexOf('0');
if (!closed.contains(current)) {
if (current.equals(goal)) {
printPath(current);
System.out.println("SUCCESS");
solving = false;
} else {
// generate children
up(current, pos, open, closed);
down(current, pos, open, closed);
left(current, pos, open, closed);
right(current, pos, open, closed);
closed.add(current);
}
}
}
}
/*
* MOVEMENT UP
*/
private static void up(Node current, int zeroPosition, Queue<Node> open, Set<Node> closed) {
if (zeroPosition >= 3) {
char substitutedChar = current.getData().charAt(zeroPosition - 3);
open.add(new Node(current.getData().substring(0, zeroPosition - 3) + '0'
+ current.getData().substring(zeroPosition - 2, zeroPosition) + substitutedChar
+ current.getData().substring(zeroPosition + 1), current));
}
}
/*
* MOVEMENT DOWN
*/
private static void down(Node current, int zeroPosition, Queue<Node> open, Set<Node> closed) {
if (zeroPosition <= 5) {
char substitutedChar = current.getData().charAt(zeroPosition + 3);
open.add(new Node(current.getData().substring(0, zeroPosition) + substitutedChar
+ current.getData().substring(zeroPosition + 1, zeroPosition + 3) + '0'
+ current.getData().substring(zeroPosition + 4), current));
}
}
/*
* MOVEMENT LEFT
*/
private static void left(Node current, int zeroPosition, Queue<Node> open, Set<Node> closed) {
if (zeroPosition % 3 != 0) {
char substitutedChar = current.getData().charAt(zeroPosition - 1);
open.add(new Node(current.getData().substring(0, zeroPosition - 1) + '0' + substitutedChar
+ current.getData().substring(zeroPosition + 1), current));
}
}
/*
* MOVEMENT RIGHT
*/
private static void right(Node current, int zeroPosition, Queue<Node> open, Set<Node> closed) {
if (zeroPosition % 3 != 2) {
char substitutedChar = current.getData().charAt(zeroPosition - 1);
open.add(new Node(current.getData().substring(0, zeroPosition) + substitutedChar + '0'
+ current.getData().substring(zeroPosition + 2), current));
}
}
private static void printPath(Node current) {
Stack<String> stack = new Stack<>();
for (; current != null; current = current.getPrevious()) {
stack.push(current.getData());
}
while (!stack.isEmpty()) {
print(stack.pop());
}
}
private static void print(String s) {
System.out.println(s.substring(0, 3));
System.out.println(s.substring(3, 6));
System.out.println(s.substring(6, 9));
System.out.println();
}
}
请注意,我没有更改基本的电路板表示形式(您选择使用String,而我建议使用2d数组,其中交换的成本要低得多,代码也变得更容易理解)
一些注意事项:
Set<String> set = new HashSet<>();
而不是Set<String> set = new HashSet<String>();
if (booleanVariable)
比if (booleanVariable == true)
更合适(可能还有很多其他事情,但这是一个有用的清单)
编辑: 下面添加了数据为二维数组的版本 基本包装;
import java.util.Arrays;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Set;
import java.util.Stack;
public class Puzzle {
private static class Node {
private final Node previous;
private final char[][] data;
public Node getPrevious() {
return previous;
}
public char[][] getData() {
return data;
}
public int getZeroX() {
return zeroX;
}
public int getZeroY() {
return zeroY;
}
private final int zeroX;
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Arrays.deepHashCode(data);
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Node other = (Node) obj;
if (!Arrays.deepEquals(data, other.data))
return false;
return true;
}
private final int zeroY;
public Node(Node previous, char[][] data, int zeroX, int zeroY) {
super();
this.previous = previous;
this.data = data;
this.zeroX = zeroX;
this.zeroY = zeroY;
}
}
public static void main(String args[]) {
Queue<Node> open = new LinkedList<>(); //Stack<Node> open = new Stack<>();
Set<Node> closed = new HashSet<>();
Node start = new Node(null, new char[][] { { '1', '2', '0' }, { '3', '4', '5' }, { '6', '7', '8' } }, 2, 0);
Node goal = new Node(null, new char[][] { { '0', '1', '2' }, { '3', '4', '5' }, { '6', '7', '8' } }, 0, 0);
open.add(start); //open.push(start);
boolean solving = true;
while (!open.isEmpty() && solving) {
Node current = open.poll(); //open.pop();
if (!closed.contains(current)) {
if (current.equals(goal)) {
printPath(current);
System.out.println("SUCCESS");
solving = false;
} else {
// generate children
up(current, open, closed);
down(current, open, closed);
left(current, open, closed);
right(current, open, closed);
closed.add(current);
}
}
}
}
/*
* MOVEMENT UP
*/
private static void up(Node current, Queue<Node>/*Stack<Node>*/ open, Set<Node> closed) {
if (current.getZeroY() > 0) {
char[][] chars = copy(current.getData());
chars[current.getZeroY()][current.getZeroX()] = chars[current.getZeroY() - 1][current.getZeroX()];
chars[current.getZeroY() - 1][current.getZeroX()] = '0';
open.add/*push*/(new Node(current, chars, current.getZeroX(), current.getZeroY() - 1));
}
}
/*
* MOVEMENT DOWN
*/
private static void down(Node current, Queue<Node>/*Stack<Node>*/ open, Set<Node> closed) {
if (current.getZeroY() < 2) {
char[][] chars = copy(current.getData());
chars[current.getZeroY()][current.getZeroX()] = chars[current.getZeroY() + 1][current.getZeroX()];
chars[current.getZeroY() + 1][current.getZeroX()] = '0';
open.add/*push*/(new Node(current, chars, current.getZeroX(), current.getZeroY() + 1));
}
}
/*
* MOVEMENT LEFT
*/
private static void left(Node current, Queue<Node>/*Stack<Node>*/ open, Set<Node> closed) {
if (current.getZeroX() > 0) {
char[][] chars = copy(current.getData());
chars[current.getZeroY()][current.getZeroX()] = chars[current.getZeroY()][current.getZeroX() - 1];
chars[current.getZeroY()][current.getZeroX() - 1] = '0';
open.add/*push*/(new Node(current, chars, current.getZeroX() - 1, current.getZeroY()));
}
}
/*
* MOVEMENT RIGHT
*/
private static void right(Node current, Queue<Node>/*Stack<Node>*/ open, Set<Node> closed) {
if (current.getZeroX() < 2) {
char[][] chars = copy(current.getData());
chars[current.getZeroY()][current.getZeroX()] = chars[current.getZeroY()][current.getZeroX() + 1];
chars[current.getZeroY()][current.getZeroX() + 1] = '0';
open.add/*push*/(new Node(current, chars, current.getZeroX() + 1, current.getZeroY()));
}
}
private static char[][] copy(char[][] data) {
char[][] newData = new char[3][3];
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
newData[i][j] = data[i][j];
}
}
return newData;
}
private static void printPath(Node current) {
Stack<char[][]> stack = new Stack<>();
for (; current != null; current = current.getPrevious()) {
stack.push(current.getData());
}
while (!stack.isEmpty()) {
print(stack.pop());
}
}
private static void print(char[][] chars) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
System.out.print(chars[i][j]);
}
System.out.println();
}
System.out.println();
}
}
EDIT2:添加了将其转换为DFS的更改的注释
祝你好运!