所以我一直在从事这个聊天机器人项目,我正在为其SML使用SVM,我真的想使用余弦相似度作为内核。我曾尝试使用pykernel(as suggested from this post)或其他来源的其他代码,但仍然无法正常工作,我也不知道为什么...
说我有train.py
这样的代码
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import pickle, csv, json, timeit, random, os, nltk
from nltk.stem.lancaster import LancasterStemmer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split as tts
from sklearn.preprocessing import LabelEncoder as LE
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
from Sastrawi.StopWordRemover.StopWordRemoverFactory import StopWordRemoverFactory
import my_kernel
def preprocessing(text):
factory1 = StopWordRemoverFactory()
StopWord = factory1.create_stop_word_remover()
text = StopWord.remove(text)
factory2 = StemmerFactory()
stemmer = factory2.create_stemmer()
return (stemmer.stem(text))
le = LE()
tfv = TfidfVectorizer(min_df=1)
file = os.path.join(os.path.dirname(os.path.abspath(__file__)),"scraping","tes.json")
svm_pickle_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),"data","svm_model.pickle")
if os.path.exists(svm_pickle_path):
os.remove(svm_pickle_path)
tit = [] # Title
cat = [] # Category
post = [] # Post
with open(file, "r") as sentences_file:
reader = json.load(sentences_file)
for row in reader:
tit.append(preprocessing(row["Judul"]))
cat.append(preprocessing(row["Kategori"]))
post.append(preprocessing(row["Post"]))
tfv.fit(tit)
le.fit(cat)
features = tfv.transform(tit)
labels = le.transform(cat)
trainx, testx, trainy, testy = tts(features, labels, test_size=.30, random_state=42)
model = SVC(kernel=my_kernel, C=1.5)
f = open(svm_pickle_path, 'wb')
pickle.dump(model.fit(trainx, trainy), f)
f.close()
print("SVC training score:", model.score(testx, testy))
with open(svm_pickle_path, 'rb') as file:
pickle_model = pickle.load(file)
score = pickle_model.score(testx, testy)
print("Test score: {0:.2f} %".format(100 * score))
Ypredict = pickle_model.predict(testx)
print(Ypredict)
以及my_kernel.py
代码:
import numpy as np
import math
from numpy import linalg as LA
def my_kernel(X, Y):
norm = LA.norm(X) * LA.norm(Y)
return np.dot(X, Y.T)/norm
它显示了我每次运行程序时的情况
Traceback (most recent call last):
File "F:\env\chatbot\chatbotProj\chatbotProj\train.py", line 84, in <module>
pickle.dump(model.fit(trainx, trainy), f)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 212, in fit
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 252, in _dense_fit
X = self._compute_kernel(X)
File "F:\env\lib\site-packages\sklearn\svm\base.py", line 380, in _compute_kernel
kernel = self.kernel(X, self.__Xfit)
File "F:\env\chatbot\chatbotProj\chatbotProj\ChatbotCode\svm.py", line 31, in my_kernel
norm = LA.norm(X) * LA.norm(Y)
File "F:\env\lib\site-packages\numpy\linalg\linalg.py", line 2359, in norm
sqnorm = dot(x, x)
File "F:\env\lib\site-packages\scipy\sparse\base.py", line 478, in __mul__
raise ValueError('dimension mismatch')
ValueError: dimension mismatch
我是python和SVM领域的新手,有人知道这是什么问题吗,或者可以推荐我如何更好,更干净地编写余弦相似性内核?
根据train_test_split
sklearn,火车X的尺寸为(193,634),火车Y为(193,),测试X为(83,634),测试Y为(83,)。
答案 0 :(得分:0)
更新:
我的朋友告诉我,这是因为我的稀疏矩阵不是一个简单的数组,所以我必须将其密集化,并替换my_kernel.py
代码,像这样
def my_kernel(X, Y):
X=np.array(X.todense())
Y=np.array(Y.todense())
norm = LA.norm(X) * LA.norm(Y)
return np.dot(X, Y.T)/norm