目前,我尝试使用Lucene(4.10.4)获得两个文档之间的余弦相似度。 我已经阅读了 this answer about cosine similarity with Lucene ,我用这个例子来了解它如何与Lucene一起使用。 但是当我用每个文档测试2个相同的单词时(例如:“Hello world”),我的相似度为0.9999999999999998
我的代码看起来像这样:
import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import org.apache.commons.io.FileUtils;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealVector;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.DocsEnum;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.BytesRef;
public class CosineSimeTest {
static String indexName = "/tmp/CosineExample";
public static final String CONTENT = "field";
public static final int N = 2;
private final Set<String> terms = new HashSet<>();
private final RealVector v1;
private final RealVector v2;
public static void main(String[] args) {
try {
CosineSimeTest cosSim = new CosineSimeTest("hello world", "hello world");
System.out.println(cosSim.getCosineSimilarity());
} catch (IOException e) {
e.printStackTrace();
}
}
public CosineSimeTest(String s1, String s2) throws IOException {
Directory directory = createIndex(s1, s2);
IndexReader reader = DirectoryReader.open(directory);
Map<String, Double> f1 = getWieghts(reader, 0);
Map<String, Double> f2 = getWieghts(reader, 1);
reader.close();
v1 = toRealVector(f1);
System.out.println("V1: " + v1);
v2 = toRealVector(f2);
System.out.println("V2: " + v2);
}
public Directory createIndex(String s1, String s2) throws IOException {
File f = new File(indexName);
if (f.exists()) {
FileUtils.deleteDirectory(f);
}
Directory directory = FSDirectory.open(new File(indexName));
StandardAnalyzer analyzer = new StandardAnalyzer();
IndexWriterConfig iwc = new IndexWriterConfig(null, analyzer);
IndexWriter writer = new IndexWriter(directory, iwc);
addDocument(writer, s1);
addDocument(writer, s2);
writer.close();
return directory;
}
public void addDocument(IndexWriter writer, String data) throws IOException {
Document doc = new Document();
FieldType type = new FieldType();
type.setIndexed(true);
type.setStoreTermVectors(true);
type.setStoreTermVectorPositions(true);
type.freeze();
Field field = new Field(CONTENT, data, type);
doc.add(field);
writer.addDocument(doc);
}
public double getCosineSimilarity() {
double dotProduct = v1.dotProduct(v2);
System.out.println("Dot: " + dotProduct);
System.out.println("V1_norm: " + v1.getNorm() + ", V2_norm: " + v2.getNorm());
double normalization = (v1.getNorm() * v2.getNorm());
System.out.println("Norm: " + normalization);
return dotProduct / normalization;
}
public Map<String, Double> getWieghts(IndexReader reader, int docId) throws IOException {
Terms vector = reader.getTermVector(docId, CONTENT);
Map<String, Integer> docFrequencies = new HashMap<>();
Map<String, Integer> termFrequencies = new HashMap<>();
Map<String, Double> tf_Idf_Weights = new HashMap<>();
TermsEnum termsEnum = null;
DocsEnum docsEnum = null;
termsEnum = vector.iterator(termsEnum);
BytesRef text = null;
while ((text = termsEnum.next()) != null) {
String term = text.utf8ToString();
docFrequencies.put(term, reader.docFreq(new Term(CONTENT, term)));
docsEnum = termsEnum.docs(null, null);
while (docsEnum.nextDoc() != DocIdSetIterator.NO_MORE_DOCS) {
termFrequencies.put(term, docsEnum.freq());
}
terms.add(term);
}
for (String term : docFrequencies.keySet()) {
int tf = termFrequencies.get(term);
int df = docFrequencies.get(term);
double idf = (1 + Math.log(N) - Math.log(df));
double w = tf * idf;
tf_Idf_Weights.put(term, w);
}
// System.out.println("Printing docFrequencies:");
// printMap(docFrequencies);
//
// System.out.println("Printing termFrequencies:");
// printMap(termFrequencies);
//
// System.out.println("Printing if/idf weights:");
// printMapDouble(tf_Idf_Weights);
return tf_Idf_Weights;
}
public RealVector toRealVector(Map<String, Double> map) {
RealVector vector = new ArrayRealVector(terms.size());
int i = 0;
double value = 0;
for (String term : terms) {
if (map.containsKey(term)) {
value = map.get(term);
} else {
value = 0;
}
vector.setEntry(i++, value);
}
return vector;
}
public static void printMap(Map<String, Integer> map) {
for (String key : map.keySet()) {
System.out.println("Term: " + key + ", value: " + map.get(key));
}
}
public static void printMapDouble(Map<String, Double> map) {
for (String key : map.keySet()) {
System.out.println("Term: " + key + ", value: " + map.get(key));
}
}
public void getVersionOfLucene(StandardAnalyzer analyzer) {
System.out.println("version : " + analyzer.getVersion());
}
}
有什么问题?如何解决这个问题?
提前致谢。