我有273个灰度图像(无人驾驶飞机),我想应用更快的R-CNN模型对图像中的对象进行分类,但是首先我使用了预先训练的AlexNet模型来提高项目速度。但是,在尝试使用预先训练的AlexNet模型提取图像特征并在Mathworks网站(AlexNet : Extract Image Features)的下面编写代码时
layer = 'fc7';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');
MATLAB显示以下错误:
Error using nnet.internal.cnn.validateMiniBatchDatastore>checkPartitionByIndex (line 90)
Incorrectly defined MiniBatchable Datastore. Error in partitionByIndex method of F:\Program Files\MATLAB\R2018a\toolbox\nnet\cnn\+nnet\+internal\+cnn\ImageDatastoreMiniBatchDatastore.m at line 59:
Undefined function 'categories' for input arguments of type 'double'.
Error in nnet.internal.cnn.validateMiniBatchDatastore (line 16)
checkPartitionByIndex(ds);
Error in nnet.internal.cnn.DataDispatcherFactory.createDataDispatcher (line 67)
nnet.internal.cnn.validateMiniBatchDatastore(inputs);
Error in SeriesNetwork>iDataDispatcher (line 1112)
dispatcher = nnet.internal.cnn.DataDispatcherFactory.createDataDispatcher( ...
Error in SeriesNetwork/activations (line 790)
dispatcher = iDataDispatcher( X, miniBatchSize, precision, ...
Error in myprj (line 24)
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
如何解决此问题?