卡尔曼滤波器的实现,以过滤加速度并找到速度和位置

时间:2018-12-08 10:08:41

标签: java matrix kalman-filter

我已经在Java中实现了3D卡尔曼滤波器,以过滤加速度并找到速度和位置,我将加速度作为传感器数据,但是当我应用过滤时,结果是不希望的,这可能是有些错误并且我不知道 有一个MYKalmanFilter3D类,第二个是Matrix类

这是MYKalmanFilter3D类代码..

public class MyKalmanFilter3D {
    Matrix X;          //State Space
    Matrix P;          //error coveriance
    double T;          //Delta T time
    Matrix F;          //Transition Matrix
    double Q;          //Proces Noise Matrix
    double R;          //Measurment Noise or variance in sensor
    double Y;          //Residual
    Matrix K;          //Kalman Gain
    double Bu;         //Model Control input
    Matrix H;          //Measurement funtion

    //Cunstructer initializing the state space
    public MyKalmanFilter3D(double accelration, double t, double r) { //recieving sensor initial value, time and noise in sensor
        //State Space 3 x 1
        double[][] x = new double[][]{{0.}, {0.}, {accelration}};
        this.X = new Matrix(x);
        //error coveriance 3 x 3
        double[][] p = new double[][]{{10., 0., 0}, {0., 10, 0.}, {0., 0., 10.}};
        this.P = new Matrix(p);
        //Delta T time
        this.T = t;
        //State Transition Matrix 3 x 3
        double[][] f = new double[][]{{1., T, 0.5 * (T * T)}, {0., 1., T}, {0., 0., 1.}};
        this.F = new Matrix(f);
        //Proces Noise Matrix
        this.Q = 0;
        //Measurment Noise or variance in sensor
        this.R = r;
        //Residual
        this.Y = 0;
        //Kalman Gain
        double[][] k = new double[][]{{1.}, {1.}, {1.}};
        this.K = new Matrix(k);
        //Model Control input
        this.Bu = 0;
        //Measurement Funtion
        double[][] h = new double[][]{{0., 0., 1.}};
        this.H = new Matrix(h);
    }

    //getter for accelration in state space
    double estimatedAccelration() {
        return X.elementAt(2, 0);
    }

    //getter for velocity in state space
    double velocity() {
        return X.elementAt(1, 0);
    }

    //getter for position in state space
    double position() {
        return X.elementAt(0, 0);
    }

    //Predict
    // X' = X*F + B*u
    // P' = F*P*Ft + Q

    public void predict() {
        X = F.times(X);
        P = F.times(P).times(F.transpose());
    }

    //Update
    // Y = Z - H*X'
    // K = P*H't / (H*P*H't + R)
    // X = X' + K*Y
    // p = (1 - K*H)*P'

    public void update(double Z) { //here is Z measurement value from sensor which is to be filter
        Y = Z - H.times(X).elementAt(0, 0);
        K = P.times(H.transpose()).dividedByNumber((H.times(P.times(H.transpose())).elementAt(0, 0) + R));
        X = X.plus(K.multiplyByNumber(Y));
        P = (K.numberSubtractedByMatrix(1).times(H)).times(P);
    }
}

这是矩阵类代码...

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.util.Locale;
import android.util.Log;
final public class Matrix {
    private final int M;             // number of rows
    private final int N;             // number of columns
    private final double[][] data;   // M-by-N array

    // create M-by-N matrix of 0's
    public Matrix(int M, int N) {
        this.M = M;
        this.N = N;
        data = new double[M][N];
    }

    // create matrix based on 2d array
    public Matrix(double[][] data) {
        M = data.length;
        N = data[0].length;
        this.data = new double[M][N];
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                this.data[i][j] = data[i][j];
    }

    // copy constructor
    private Matrix(Matrix A) { this(A.data); }

    // create and return a random M-by-N matrix with values between 0 and 1
    public static Matrix random(int M, int N) {
        Matrix A = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                A.data[i][j] = Math.random();
        return A;
    }

    // create and return the N-by-N identity matrix
    public static Matrix identity(int N) {
        Matrix I = new Matrix(N, N);
        for (int i = 0; i < N; i++)
            I.data[i][i] = 1;
        return I;
    }

    // swap rows i and j
    private void swap(int i, int j) {
        double[] temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

    // create and return the transpose of the invoking matrix
    public Matrix transpose() {
        Matrix A = new Matrix(N, M);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                A.data[j][i] = this.data[i][j];
        return A;
    }

    // return A = A / number
    public Matrix dividedByNumber(double num) {
        Matrix A = this;
        Matrix C = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                C.data[i][j] = A.data[i][j] / num;
        return C;
    }

    // return A = number - A
    public Matrix numberSubtractedByMatrix(double num) {
        Matrix A = this;
        Matrix C = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                C.data[i][j] = num - A.data[i][j];
        return C;
    }
    // return A = A x number
    public Matrix multiplyByNumber(double num) {
        Matrix A = this;
        Matrix C = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                C.data[i][j] = A.data[i][j] * num;
        return C;
    }

    // return C = A + B
    public Matrix plus(Matrix B) {
        Matrix A = this;
        if (B.M != A.M || B.N != A.N) throw new RuntimeException("Illegal matrix dimensions.");
        Matrix C = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                C.data[i][j] = A.data[i][j] + B.data[i][j];
        return C;
    }

    // return element at m x n
    public double elementAt(int m, int n) {
        Matrix A = this;
        return A.data[m][n];
    }

    // return element at m x n of given Matrix
    public double elementAt(int m, int n, Matrix M) {
        return M.data[m][n];
    }

    // return C = A - B
    public Matrix minus(Matrix B) {
        Matrix A = this;
        if (B.M != A.M || B.N != A.N) throw new RuntimeException("Illegal matrix dimensions.");
        Matrix C = new Matrix(M, N);
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                C.data[i][j] = A.data[i][j] - B.data[i][j];
        return C;
    }

    // does A = B exactly?
    public boolean eq(Matrix B) {
        Matrix A = this;
        if (B.M != A.M || B.N != A.N) throw new RuntimeException("Illegal matrix dimensions.");
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                if (A.data[i][j] != B.data[i][j]) return false;
        return true;
    }

    // return C = A * B
    public Matrix times(Matrix B) {
        Matrix A = this;
        if (A.N != B.M) throw new RuntimeException("Illegal matrix dimensions.");
        Matrix C = new Matrix(A.M, B.N);
        for (int i = 0; i < C.M; i++)
            for (int j = 0; j < C.N; j++)
                for (int k = 0; k < A.N; k++)
                    C.data[i][j] += (A.data[i][k] * B.data[k][j]);
        return C;
    }


    // return x = A^-1 b, assuming A is square and has full rank
    public Matrix solve(Matrix rhs) {
        if (M != N || rhs.M != N || rhs.N != 1)
            throw new RuntimeException("Illegal matrix dimensions.");

        // create copies of the data
        Matrix A = new Matrix(this);
        Matrix b = new Matrix(rhs);

        // Gaussian elimination with partial pivoting
        for (int i = 0; i < N; i++) {

            // find pivot row and swap
            int max = i;
            for (int j = i + 1; j < N; j++)
                if (Math.abs(A.data[j][i]) > Math.abs(A.data[max][i]))
                    max = j;
            A.swap(i, max);
            b.swap(i, max);

            // singular
            if (A.data[i][i] == 0.0) throw new RuntimeException("Matrix is singular.");

            // pivot within b
            for (int j = i + 1; j < N; j++)
                b.data[j][0] -= b.data[i][0] * A.data[j][i] / A.data[i][i];

            // pivot within A
            for (int j = i + 1; j < N; j++) {
                double m = A.data[j][i] / A.data[i][i];
                for (int k = i+1; k < N; k++) {
                    A.data[j][k] -= A.data[i][k] * m;
                }
                A.data[j][i] = 0.0;
            }
        }

        // back substitution
        Matrix x = new Matrix(N, 1);
        for (int j = N - 1; j >= 0; j--) {
            double t = 0.0;
            for (int k = j + 1; k < N; k++)
                t += A.data[j][k] * x.data[k][0];
            x.data[j][0] = (b.data[j][0] - t) / A.data[j][j];
        }
        return x;

    }

    // print matrix to standard output
    public void show() {
        for (int i = 0; i < M; i++) {
            for (int j = 0; j < N; j++) {
                System.out.print(data[i][j]);
                System.out.print(" ");
            }

                //Log.d("MATRIX: ", String.valueOf();
            System.out.print("\n");
            //Log.d("","\n");

        }
    }
}

1 个答案:

答案 0 :(得分:0)

我不太熟练使用Java,因此就Kalman过滤器实现而言,我无法完全遵循您的代码。但是,使用加速度计获取速度和位置在理论上似乎是可行的,但在现实生活中,由于MEMS加速度计存在不同的不确定性,即使经过很短的时间,您仍然会在速度和位置上获得巨大的误差。

看看这个link,它很好地介绍了加速度计的不确定性模型。

简而言之,不要仅使用消费级加速度计就位置和速度方面取得好的结果。如果要测试代码,请使用模拟的伪造数据来控制不确定性。