我想集成三维功能。让我们将函数定义为:
def pi(x, y, z): return x + y ** 2 + z ** 3
作为一个简单的例子。让我们选择域为[0,1]x[0,2]x[0,3]
。 According to wolframalpha, the desired integration result is 18.5.这是我尝试的第一件事。我创建了pi(x,y,z)评估的3D张量,然后进行3个1D积分:
from scipy.integrate import trapz
import numpy as np
x = np.linspace(0, 1)
y = np.linspace(0, 2)
z = np.linspace(0, 3)
print(trapz(trapz(trapz(pi(x[:, None, None], y[None, :, None], z[None, None, :]), x), y), z)) # 51.51853394418992
请注意,我的输出不正确。我认为这是错误的,因为我没有正确的集成顺序。我接下来尝试做的事情是明确引用x,y和z的3D张量。这会导致与第一个trapz调用相关的意外形状不匹配:
print(trapz(trapz(trapz(pi(x[:, None, None], y[None, :, None], z[None, None, :]), x[:, None, None]), y[None, :, None]), z[None, None, :]))
Traceback (most recent call last):
File "/usr/local/Cellar/python/3.6.5/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/numpy/lib/function_base.py", line 4523, in trapz
ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis)
ValueError: operands could not be broadcast together with shapes (50,1,0) (50,50,49)
所以,我很困惑。如何执行所需的集成?
答案 0 :(得分:2)
在Wolfram示例中,您的积分是从内到外的:在x上从0到 3 积分,然后在y上从0到2积分,最后在z上从0到积分。 1 。但是在您的代码中,您有x从0到1以及z从0到3的情况。当我把这些值放在不同的范围内时,我得到18.502290712203248
:
def pi(x, y, z):
return x + y ** 2 + z ** 3
x = np.linspace(0, 3) # To three!
y = np.linspace(0, 2)
z = np.linspace(0, 1) # To one!
# I broke this up here, just to make it easier for me to read and debug.
x_int = trapz(pi(x[:, None, None], y[None, :, None], z[None, None, :]), x)
y_int = trapz(x_int, y)
z_int = trapz(y_int, z)
print(z_int)