Pytorch RuntimeError:大小不匹配,m1:[1 x 7744],m2:[400 x 120]

时间:2018-11-27 13:29:22

标签: python tensorflow machine-learning pytorch

在分类5个对象的简单CNN中,出现大小不匹配错误:

"RuntimeError: size mismatch, m1: [1 x 7744], m2: [400 x 120]" in the convolutional layer . 

我的model.py文件:

import torch.nn as nn
import torch.nn.functional as F

class FNet(nn.Module):


    def __init__(self,device):
        # make your convolutional neural network here
        # use regularization
        # batch normalization
        super(FNet, self).__init__()
        num_classes = 5
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 5)

    def forward(self, x):

        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

if __name__ == "__main__":
    net = FNet()

完全错误:

Traceback (most recent call last):
  File "main.py", line 98, in <module>
    train_model('../Data/fruits/', save=True, destination_path='/home/mitesh/E yantra/task1#hc/Task 1/Task 1B/Data/fruits')
  File "main.py", line 66, in train_model
    outputs = model(images)
  File "/home/mitesh/anaconda3/envs/HC#850_stage1/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/mitesh/E yantra/task1#hc/Task 1/Task 1B/Code/model.py", line 28, in forward
    x = F.relu(self.fc1(x))
  File "/home/mitesh/anaconda3/envs/HC#850_stage1/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/mitesh/anaconda3/envs/HC#850_stage1/lib/python3.6/site-packages/torch/nn/modules/linear.py", line 55, in forward
    return F.linear(input, self.weight, self.bias)
  File "/home/mitesh/anaconda3/envs/HC#850_stage1/lib/python3.6/site-packages/torch/nn/functional.py", line 1024, in linear
    return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [1 x 7744], m2: [400 x 120] at /opt/conda/conda-bld/pytorch-cpu_1532576596369/work/aten/src/TH/generic/THTensorMath.cpp:2070

1 个答案:

答案 0 :(得分:0)

如果您的网络中有一个nn.Linear层,则无法“即时”确定该层的输入大小。
在您的网络中,您为每个num_flat_features计算x,并期望您的self.fc1处理喂入网络的x的任何大小。但是,self.fc1具有大小为400x120的固定大小权重矩阵(期望输入尺寸为16 * 5 * 5 = 400并输出120暗淡特征)。在您的情况下,x的大小转换为self.fc1根本无法处理的7744个暗角特征向量。

如果您确实希望网络能够处理任意大小的x,则可以在没有参数的情况下使用 插值层,将所有x的大小调整为合适的大小,然后再进行调整self.fc1

x = F.max_pool2d(F.relu(self.conv2(x)), 2)  # output of conv layers
x = F.interpolate(x, size=(5, 5), mode='bilinear')  # resize to the size expected by the linear unit
x = x.view(x.size(0), 5 * 5 * 16)
x = F.relu(self.fc1(x))  # you can go on from here...

有关更多信息,请参见torch.nn.functional.interpolate