任何人都可以帮我解决此错误吗?
运行时错误:无效参数2:对于在/ Users / soumith / miniconda2 / conda-bld / pytorch_1503975723910 / work / torch / lib / TH / THStorage中输入1597248元素,大小'[ - 1 x 400]'无效。 C:37
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.data[0]
if i % 5 == 4: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 5))
running_loss = 0.0
print('Finished Training')
答案 0 :(得分:1)
当我缩放图像尺寸时,错误停止发生。
protected $fillable =
['question','description','solution','image','tags','user_id'
,'subcategory_id'];
答案 1 :(得分:0)
您的问题是图像的大小不是32 * 32。
要解决此问题,您需要根据网络的输入大小计算QSqlQueryModel::data
的输入大小。
答案 2 :(得分:0)
计算输入大小应该可以解决此问题,而无需缩放图像。 公式是 output_size =((image_size + 2 * padding -filter)/ stride +1)