我已经执行了以下代码,并在最底部显示了错误。我想知道如何解决这个问题。谢谢
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torchvision import transforms
_tasks = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
from torchvision.datasets import MNIST
mnist = MNIST("data", download=True, train=True, transform=_tasks)
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
create training and validation split
split = int(0.8 * len(mnist))
index_list = list(range(len(mnist)))
train_idx, valid_idx = index_list[:split], index_list[split:]
create sampler objects using SubsetRandomSampler
tr_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(valid_idx)
create iterator objects for train and valid datasets
trainloader = DataLoader(mnist, batch_size=256, sampler=tr_sampler)
validloader = DataLoader(mnist, batch_size=256, sampler=val_sampler)
创建执行模型
class Model(nn.Module):
def init(self):
super().init()
self.hidden = nn.Linear(784, 128)
self.output = nn.Linear(128, 10)
def forward(self, x):
x = self.hidden(x)
x = F.sigmoid(x)
x = self.output(x)
return x
model = Model()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay= 1e-6, momentum = 0.9, nesterov = True)
for epoch in range(1, 11): ## run the model for 10 epochs
train_loss, valid_loss = [], []
#training part
model.train()
for data, target in trainloader:
optimizer.zero_grad()
#1. forward propagation
output = model(data)
#2. loss calculation
loss = loss_function(output, target)
#3. backward propagation
loss.backward()
#4. weight optimization
optimizer.step()
train_loss.append(loss.item())
# evaluation part
model.eval()
for data, target in validloader:
output = model(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
执行此操作,我收到以下错误:
(p)中的RuntimeError Traceback(最近一次通话最近) ----> 1输出=模型(数据)2 3 ## 2.损失计算4损失= loss_function(输出,目标)5
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py在 call(self,* input,** kwargs)487 result = self._slow_forward(* input, ** kwargs)
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py在 线性(输入,重量,偏置)1352 ret = torch.addmm(torch.jit._unwrap_optional(bias),input,weight.t())1353 其他: -> 1354输出= input.matmul(weight.t())1355如果没有偏置,则无:1356输出+ = torch.jit._unwrap_optional(bias)
RuntimeError:大小不匹配,m1:[3584 x 28],m2:[784 x 128],位于 /pytorch/aten/src/TH/generic/THTensorMath.cpp:940
答案 0 :(得分:2)
您输入的MNIST数据具有与URL
相对应的形状[256, 1, 28, 28]
。您需要先将输入图像展平为一个784长的矢量,然后再将其馈送到线性层[B, C, H, W]
,以使输入变为与Linear(784, 128)
相对应的[256, 784]
,其中N为1x28x28,即图像尺寸。可以按照以下步骤进行操作:
[B, N]
在验证循环中需要执行相同的操作。