获得因素(0)级别:在预测NaiveBayes模型中

时间:2018-11-24 18:05:57

标签: r predict naivebayes

我涉及示例中的最后一行。我想为每个$.getJSON('data.json', function(json) { if(json[2].data){ for (i = 0; i < json[3].data.length; i++) { choiceSelection[i] = new Array; choiceSelection[i][0] = json[2].data[i].question; choiceSelection[i][1] = json[2].data[i].correctChoice; choiceSelection[i][2] = json[2].data[i].choice1; choiceSelection[i][3] = json[2].data[i].choice2; } // choiceSelection.length = choiceSelection.length; displayQuestion(); console.log(json[2]); } }) 值建立一个[ { "name": "match numbers 1", "template": "matching", "data": [ [ "six", "Images/Number6.jpg" ], [ "eight", "Images/Number8.jpg" ], [ "nine", "Images/Number9.jpg" ] ] }, { "name": "order numbers 1", "template": "ordering", "data": [ [ "Images/Number6.jpg" ], [ "Images/Number8.jpg" ], [ "Images/Number9.jpg" ] ] }, { "name": "animal", "template": "picture game", "data": [ { "question": "Where is the cat?", "correctChoice": "Images/5cats.jpg", "choice1": "Images/squirrel.png", "choice2": "Images/beagle.png" }, { "question": "Where is the cat?", "correctChoice": "Images/5cats.jpg", "choice1": "Images/squirrel.png", "choice2": "Images/beagle.png" } ] } ] 模型。这意味着我将为他们的NaiveBayes的所有行构建train$TN,为所有train$TN = 4的行构建NB_TRAIN_model[[1]]等。但是,该模型将必须基于train$TN = 9而不是NB_TRAIN_model[[2]]。因此,我希望我可以使用以下方法排除此值:train$Solar.R, train$Wind, train$Temp, train$Month, train$Day(请参见最后一行):

train$TN

现在,我想预测测试中的值。我尝试在第一行中使用Ozone ~ . -TN, data = x

   library(party)
   library(e1071)
    airq <- subset(airquality, !is.na(Ozone))
    ## split data to train and test
    set.seed(123)
    train_ind <- sample(seq_len(nrow(airq)), size = smp_size)
    train <- airq[train_ind, ]
    test <- airq[-train_ind, ]

    ct <- ctree(Ozone ~ ., data = train,  controls = ctree_control(maxsurrogate = 3))
    train$TN<-factor (ct@where)

## Builds a NB model per each terminal node
NB_TRAIN_model<-lapply(split(train, train$TN), function(x) naiveBayes(Ozone ~ . -TN, data = x))

我得到:

model[[1]]

0 个答案:

没有答案