我的数据集如下所示:
data.flu <- data.frame(chills = c(1,1,1,0,0,0,0,1), runnyNose = c(0,1,0,1,0,1,1,1), headache = c("M", "N", "S", "M", "N", "S", "S", "M"), fever = c(1,0,1,1,0,1,0,1), flu = c(0,1,1,1,0,1,0,1) )
> data.flu
chills runnyNose headache fever flu
1 1 0 M 1 0
2 1 1 N 0 1
3 1 0 S 1 1
4 0 1 M 1 1
5 0 0 N 0 0
6 0 1 S 1 1
7 0 1 S 0 0
8 1 1 M 1 1
> str(data.flu)
'data.frame': 8 obs. of 5 variables:
$ chills : num 1 1 1 0 0 0 0 1
$ runnyNose: num 0 1 0 1 0 1 1 1
$ headache : Factor w/ 3 levels "M","N","S": 1 2 3 1 2 3 3 1
$ fever : num 1 0 1 1 0 1 0 1
$ flu : num 0 1 1 1 0 1 0 1
为什么predict
函数不返回任何内容?
# I can see the model has been successfully created.
model <- naiveBayes(flu~., data=data.flu)
# I created a new data
patient <- data.frame(chills = c(1), runnyNose = c(0), headache = c("M"), fever = c(1))
> predict(model, patient)
factor(0)
Levels:
# I tried with the training data, still won't work
> predict(model, data.flu[,-5])
factor(0)
Levels:
我尝试了naiveBayes帮助手册中的示例,它对我有用。我不确定我的做法有什么问题。非常感谢!
我认为在应用naivebayes模型之前数据类型可能有问题,我尝试使用as.factor
将所有变量更改为因子,这似乎对我有用。但我仍然非常困惑的是幕后的“如何”和“为什么”。
答案 0 :(得分:27)
问题不在predict()
函数中,而在模型定义中。
naiveBayes()
的帮助文件说:
Computes the conditional a-posterior probabilities of a categorical class variable
given independent predictor variables using the Bayes rule.
所以y值应该是分类的,但在你的情况下它们是数字的。
解决方案是将flu
转换为因子。
model <- naiveBayes(as.factor(flu)~., data=data.flu)
predict(model, patient)
[1] 1
Levels: 0 1