我的问题与this thread完全相同,但是,由于这似乎还没有令人满意的答案,我认为再次提出可重复的代码仍然是合适的。
training <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv")[,-1]
testing <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv")[,-1]
# Importing data
library(e1071)
# Load the required package for SVM
svm_model <- svm(classe ~ pitch_arm + pitch_forearm + pitch_dumbbell + pitch_belt +
roll_arm + roll_forearm + roll_dumbbell + roll_belt +
yaw_arm + yaw_forearm + yaw_dumbbell + yaw_belt,
data = training, scale = FALSE, cross = 10)
# Perform SVM analysis with default gamma and cost, and do 10-fold cross validation
predict(svm_model, testing)
# R returns factor(0) here
我已检查过测试数据框是否包含所有列,并且这些必需列中不存在NA。请给我一些想法继续下去。谢谢!
答案 0 :(得分:0)
这似乎是e1071 predict.svm函数中的一个怪癖的结果。虽然您的测试数据没有模型中变量的缺失值。每个点都缺少值。
complete.cases(testing)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[14] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
您可以通过消除不需要的变量来解决此问题。
ModelVars = which(names(training) %in%
c("pitch_arm", "pitch_forearm", "pitch_dumbbell", "pitch_belt",
"roll_arm", "roll_forearm", "roll_dumbbell", "roll_belt",
"yaw_arm", "yaw_forearm", "yaw_dumbbell", "yaw_belt"))
test2 = testing[, ModelVars]
predict(svm_model, test2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A A B A A A D B A A A C A A A A A A A A
Levels: A B C D E