我正在尝试使用OpenCV和Python覆盖随机图像(自然场景图像应与符号图像覆盖)。它们的大小,文件扩展名可以不同。渠道(我想还有更多)。因此,我要根据自然场景图像的大小调整符号图像的大小,然后将其放置到后者上。
我已经实现了在此处找到的fireant的代码:overlay a smaller image on a larger image python OpenCv
但是它仅适用于具有4个通道的图像。
使用cv2.addWeighted()始终将较大的图像(场景图像)裁剪为较小的图像(标志图像)的大小。有谁知道怎么做吗?非常感谢您的帮助。
编辑:请参见下面的预期输出。首先,逃生路线标志和背景是分开的图像。
这是我的代码,可以正常工作,但是由于我的很多图像似乎只有3个通道,所以我希望它也可以正常工作。
import cv2
import time
import math
import os
pathSigns = "/home/moritz/Schreibtisch/Signs"
pathScenes = "/home/moritz/Schreibtisch/Scenes"
i = 0
for fSigns in os.listdir(pathSigns):
fSigns = os.path.join(pathSigns, fSigns)
s_img = cv2.imread(fSigns, -1)
for fScenes in os.listdir(pathScenes):
try:
l_img = cv2.imread(os.path.join(pathScenes, fScenes))
l_height, l_width, l_channels = l_img.shape
TARGET_PIXEL_AREA = (l_height * l_width) * 0.05
ratio = float(s_img.shape[1]) / float(s_img.shape[0])
s_new_h = int(math.sqrt(TARGET_PIXEL_AREA / ratio) + 0.5)
s_new_w = int((s_new_h * ratio) + 0.5)
s_img = cv2.resize(s_img,(s_new_w, s_new_h))
x_offset=y_offset=50
# l_img[y_offset:y_offset+s_img.shape[0],
x_offset:x_offset+s_img.shape[1]] = s_img
y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]
height, width, channels = s_img.shape
if channels <= 3:
alpha_s = s_img[:, :, 2] / 255.0
alpha_l = 1.0 - alpha_s
else:
alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] +
alpha_l * l_img[y1:y2, x1:x2, c])
fResult = "/home/moritz/Schreibtisch/results/data_" + str(i) +
".png"
i += 1
cv2.imwrite(fResult, l_img)
except IndexError:
pass
答案 0 :(得分:1)
由于@DanMašek提示和How to crop or remove white background from an image,我已经找到了解决方案。以下代码将首先从较小的图像中删除白色背景,然后将所有图像设置为4个通道,然后将较大的图像与较小的图像重叠。为我工作。
import cv2
import time
import math
import os
import numpy as np
pathSigns = "/home/moritz/Schreibtisch/Signs"
pathScenes = "/home/moritz/Schreibtisch/Scenes"
i = 0
for fSigns in os.listdir(pathSigns):
fSigns = os.path.join(pathSigns, fSigns)
s_img = cv2.imread(fSigns, -1)
s_height, s_width, s_channels = s_img.shape
# crop image
gray = cv2.cvtColor(s_img, cv2.COLOR_BGR2GRAY)
th, threshed = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11,11))
morphed = cv2.morphologyEx(threshed, cv2.MORPH_CLOSE, kernel)
_, cnts, _ = cv2.findContours(morphed, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnt = sorted(cnts, key=cv2.contourArea)[-1]
x,y,w,h = cv2.boundingRect(cnt)
s_img = s_img[y:y+h, x:x+w]
# set channels to 4
if s_channels < 4:
s_img = cv2.cvtColor(s_img, cv2.COLOR_BGR2BGRA)
for fScenes in os.listdir(pathScenes):
try:
l_img = cv2.imread(os.path.join(pathScenes, fScenes))
l_height, l_width, l_channels = l_img.shape
if l_channels < 4:
l_img = cv2.cvtColor(l_img, cv2.COLOR_BGR2BGRA)
TARGET_PIXEL_AREA = (l_height * l_width) * 0.05
ratio = float(s_img.shape[1]) / float(s_img.shape[0])
s_new_h = int(math.sqrt(TARGET_PIXEL_AREA / ratio) + 0.5)
s_new_w = int((s_new_h * ratio) + 0.5)
s_img = cv2.resize(s_img,(s_new_w, s_new_h))
x_offset=y_offset=50
y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]
alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] + alpha_l *
l_img[y1:y2, x1:x2, c])
fResult = "/home/moritz/Schreibtisch/results/data_" + str(i) + ".png"
i += 1
cv2.imwrite(fResult, l_img)
except IndexError:
pass