我有一个如下所示的pandas数据框。它有大约一百万行。
name = ['Jake','Matt', 'Henry']
0 A
1 Jake Hill
2 Matt Dawn
3 Matt King
4 White Henry
5 Hyde Jake
我想遍历列表和df ['A']列并仅返回名字。例如,最终数据帧应如下所示。
0 A
1 Jake
2 Matt
3 Matt
4 Henry
5 Jake
先谢谢了。我是python的新手,因此仍然想出最简单的方法来执行此操作。
答案 0 :(得分:3)
您具有要匹配的名称列表以及要检查的一系列名称。在此处str.extract
中使用正则表达式。
df.A.str.extract(r'({})'.format('|'.join(name)))
0
0 Jake
1 Matt
2 Matt
3 Henry
4 Jake
答案 1 :(得分:2)
这里是实现此目的的一种方法:
first_name = ['Jake','Matt', 'Henry']
df = pd.DataFrame({'A': ['Jake Hill', 'Matt Dawn', 'Matt King', 'Henry White', 'Jake Hyde']})
df['B'] = df['A'].str.split().apply(lambda x: x[0] if x[0] in first_name else ' '.join(x))
您会得到:
A B
0 Jake Hill Jake
1 Matt Dawn Matt
2 Matt King Matt
3 Henry White Henry
4 Jake Hyde Jake
答案 2 :(得分:2)
您需要:
first_name = ['Jake','Matt', 'Henry']
df = pd.DataFrame({'A': ['Jake Hill', 'Matt Dawn', 'Matt King', 'Henry White','Jake Hyde','Dwayne John']})
def func(x):
for k in first_name:
if k in x:
return k
return x
df['A'] = df['A'].apply(lambda x: func(x))
输出:
A
0 Jake
1 Matt
2 Matt
3 Henry
4 Jake
5 Dwayne John
答案 3 :(得分:0)
name = ['Jake','Matt', 'Henry']
df = pd.read_csv("file.csv")
#filling nan values in-case if it is there
df.fillna(0, inplace = True)
df["First Name"] = df.A.apply(lambda x: list(set(x.split(" ")) & set(name))[0] if x != 0 else "Not Found")
输出:
A First Name
0 Jake Hill Jake
1 Matt Dawn Matt
2 Matt King Matt
3 Henry White Henry
4 Hyde Jake Jake
答案 4 :(得分:0)
除了以前的编辑(据我了解,现在您要替换),可以通过列表理解如下进行:拆分列A
的Fist并选择其第一个索引并传递给lambda使用apply
方法。
DataFrame结构:
df
A
0 Jake Hill
1 Matt Dawn
2 Matt King
3 Henry White
4 Jake Hyde
您的name
变量。
$ name
['Jake', 'Matt', 'Henry']
您最终所需的数据集:
参数n可用于限制输出中的拆分次数。
df['A'] = df['A'].str.split(n=1, expand=True)[0].apply(lambda x: x if x in name else ' '.join(x))
print(df)
A
0 Jake
1 Matt
2 Matt
3 Henry
4 Jake
如果您不按动从Var中获取名称并且最终目标是从数据框中获取名字,则应该很简单:
>>> df
A
0 Jake Hill
1 Matt Dawn
2 Matt King
3 Henry White
4 Jake Hyde
>>> df['A'].str.split(n=1, expand=True)[0]
0 Jake
1 Matt
2 Matt
3 Henry
4 Jake
Name: 0, dtype: object
或如果您要就地替换列A
..
df['A'] = df['A'].str.split(n=1, expand=True)[0]
答案 5 :(得分:0)
尝试使用:
A_final=A[0].str.split(' ',expand=True, n=1).str.get(0)
A_final[0]
,您的问题就解决了。
答案 6 :(得分:0)
此方法不会被包含一个名字字符串之一的姓氏所欺骗,例如“ Matten”或“ Jakes”,并且如果在名字列表中都找到了名字和姓氏,则该方法将合并名字和姓氏,例如“ Matt Henry”(在输出数据框中显示“ MattHenry”)。
# split the name strings into columns as new dataframe
df1 = df.A.str.split(' ', expand=True)
# Keep the first names in the new dataframe and fill the rest with
# empty strings, then sum the df1 column string values to make a new array
names_result = np.where(df1.isin(name), df1, '').sum(axis=1)
# find the array indexes where no first names were found
no_match_idx = np.where(names_result == '')[0]
# fill the no first name index locations with original dataframe values
names_result[no_match_idx] = df.A.values[no_match_idx]
# make a dataframe using the results
df_out = pd.DataFrame(names_result, columns=['A'])
# to find names with a first and last name that are both found in the
# first names list:
# df_out['dups'] = df1.isin(name).sum(axis=1) > 1