我对VHDL有点陌生,我尝试通过实例学习。长话短说,我从一些基本示例开始,例如创建此Full Adder。
entity FA is
Port ( A : in STD_LOGIC;
B : in STD_LOGIC;
Cin : in STD_LOGIC;
S : out STD_LOGIC;
Cout : out STD_LOGIC);
end FA;
architecture gate_level of FA is
begin
S <= A XOR B XOR Cin ;
Cout <= (A AND B) OR (Cin AND A) OR (Cin AND B) ;
end gate_level;
之后,我尝试实现此4位加法器
这是我编写的代码。
entity Ripple_Adder is
Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
B : in STD_LOGIC_VECTOR (3 downto 0);
Cin : in STD_LOGIC;
S : out STD_LOGIC_VECTOR (3 downto 0);
Cout : out STD_LOGIC);
end Ripple_Adder;
architecture Behavioral of Ripple_Adder is
-- Full Adder VHDL Code Component Decalaration
component FA
Port ( A : in STD_LOGIC;
B : in STD_LOGIC;
Cin : in STD_LOGIC;
S : out STD_LOGIC;
Cout : out STD_LOGIC);
end component;
-- Intermediate Carry declaration
signal c1,c2,c3: STD_LOGIC;
begin
-- Port Mapping Full Adder 4 times
FA1: FA port map( A(0), B(0), Cin, S(0), c1);
FA2: FA port map( A(1), B(1), c1, S(1), c2);
FA3: FA port map( A(2), B(2), c2, S(2), c3);
FA4: FA port map( A(3), B(3), c3, S(3), Cout);
end Behavioral;
我还使用了一个4_bit_adder测试台文件,我发现输出正确。现在,我尝试使用4位加法器来实现4位乘法器,但我有点卡住了。实际上,这就是我要实现的乘数。
我写的代码是这样,但是我被困在端口图上
--library
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_textio.all;
use IEEE.std_logic_unsigned.all;
--entity
entity multy is
port (x: in std_logic_vector(3 downto 0);
y: in std_logic_vector(3 downto 0);
p : out std_logic_vector(7 downto 0)
);
end multy ;
-- architecture
architecture rtl of multy is
component Ripple_Adder
Port ( A : in std_logic_vector (3 downto 0);
B : in std_logic_vector (3 downto 0);
Cin : in std_logic;
S : out std_logic_vector (3 downto 0);
Cout : out std_logic);
end component ;
signal andgate: std_logic_vector(15 downto 0);
signal sumout: std_logic_vector( 11 downto 0);
signal carry: std_logic_vector(11 downto 0);
begin
andgate(0) <= x(0) and y(0);
andgate(1) <= x(1) and y(0); --b0
andgate(2) <= x(2) and y(0); --b1
andgate(3) <= x(3) and y(0); --b2
B
andgate(4) <= x(0) and y(1);
andgate(5) <= x(1) and y(1);
andgate(6) <= x(2) and y(1);
andgate(7) <= x(3) and y(1);
andgate(8) <= x(0) and y(2);
andgate(9) <= x(1) and y(2);
andgate(10) <= x(2) and y(2);
andgate(11) <= x(3) and y(2);
andgate(12) <= x(0) and y(3);
andgate(13) <= x(1) and y(3);
andgate(14) <= x(2) and y(3);
andgate(15) <= x(3) and y(3);
--gates
cell_1: Ripple_Adder port map();
cell_2: Ripple_Adder port map();
cell_3: Ripple_Adder port map();
--Assigning p values
p(0) <= andgate(0);
p(1) <= sumout(0);
p(2) <= sumout(4);
p(3) <= sumout(8);
p(4) <= sumout(9);
p(5) <= sumout(10);
p(6) <= sumout(11);
p(7) <= carry(11);
end rtl ;
答案 0 :(得分:2)
“我被卡在端口图上” 不是特定的问题说明。
使用命名关联,只要正式形式中的所有成员都已关联,地图中正式端口的成员就可以单独以及整个关联。 2008 6.5.7关联列表:
正式的接口对象应为显式声明的接口对象或该接口对象的成员(请参见5.1)。在前一种情况下,这种正式形式被称为“整体”。在后一种情况下,应使用命名关联将正式和实际关联起来;这种形式化的子元素被称为单独关联。此外,显式声明的接口对象的每个标量子元素应与同一关联列表中的实际(或其子元素)精确关联一次,并且所有此类关联应在该关联列表内以连续的顺序出现。每个与接口对象的切片或子元素(或其切片)相关联的关联元素都应使用本地静态名称标识形式。
请注意,您的携带元素太多(只需要两个),不需要andgate(0),不需要sumout(0),sumout(4)或sumout(11 downo 8),有一个多余的字符在multy架构中,您缺少上下文子句,而有未使用的use子句。
使用数组中介信号的代码:
library ieee;
use ieee.std_logic_1164.all;
-- use ieee.std_logic_textio.all; -- NOT USED
-- use ieee.std_logic_unsigned.all; -- NOT USED
entity multy is
port (
x: in std_logic_vector (3 downto 0);
y: in std_logic_vector (3 downto 0);
p: out std_logic_vector (7 downto 0)
);
end entity multy;
architecture rtl of multy is
component Ripple_Adder
port (
A: in std_logic_vector (3 downto 0);
B: in std_logic_vector (3 downto 0);
Cin: in std_logic;
S: out std_logic_vector (3 downto 0);
Cout: out std_logic
);
end component;
-- AND Product terms:
signal G0, G1, G2: std_logic_vector (3 downto 0);
-- B Inputs (B0 has three bits of AND product)
signal B0, B1, B2: std_logic_vector (3 downto 0);
begin
-- y(1) thru y (3) AND products, assigned aggregates:
G0 <= (x(3) and y(1), x(2) and y(1), x(1) and y(1), x(0) and y(1));
G1 <= (x(3) and y(2), x(2) and y(2), x(1) and y(2), x(0) and y(2));
G2 <= (x(3) and y(3), x(2) and y(3), x(1) and y(3), x(0) and y(3));
-- y(0) AND products (and y0(3) '0'):
B0 <= ('0', x(3) and y(0), x(2) and y(0), x(1) and y(0));
-- named association:
cell_1:
Ripple_Adder
port map (
a => G0,
b => B0,
cin => '0',
cout => B1(3), -- named association can be in any order
S(3) => B1(2), -- individual elements of S, all are associated
S(2) => B1(1), -- all formal members must be provide contiguously
S(1) => B1(0),
S(0) => p(1)
);
cell_2:
Ripple_Adder
port map (
a => G1,
b => B1,
cin => '0',
cout => B2(3),
S(3) => B2(2),
S(2) => B2(1),
S(1) => B2(0),
S(0) => p(2)
);
cell_3:
Ripple_Adder
port map (
a => G2,
b => B2,
cin => '0',
cout => p(7),
S => p(6 downto 3) -- matching elements for formal
);
p(0) <= x(0) and y(0);
end architecture rtl;
还有一个借用的测试台来演示:
library ieee;
use ieee.std_logic_1164.all;
entity multy_tb is -- testbench
end entity;
architecture foo of multy_tb is
signal x, y: std_logic_vector (3 downto 0);
signal yp, rp: std_logic_vector (7 downto 0);
use ieee.numeric_std.all;
function to_string (inp: std_logic_vector) return string is
variable image_str: string (1 to inp'length);
alias input_str: std_logic_vector (1 to inp'length) is inp;
begin
for i in input_str'range loop
image_str(i) := character'VALUE(std_ulogic'IMAGE(input_str(i)));
end loop;
return image_str;
end function;
begin
DUT:
entity work.multy
port map (
x => x,
y => y,
p => yp
);
STIMULI:
process
begin
for i in 0 to 15 loop
x <= std_logic_vector(to_unsigned(i, x'length));
for j in 0 to 15 loop
y <= std_logic_vector(to_unsigned(j, y'length));
wait for 0 ns; -- assignments take effect
rp <= std_logic_vector(unsigned (x) * unsigned(y));
wait for 10 ns;
if yp /= rp then
report "multy error";
report HT & "expected " & to_string (rp);
report HT & "got " & to_string (yp);
end if;
end loop;
end loop;
wait;
end process;
end architecture;
-2008之前的模拟器包含to_string函数。上下文子句已添加到FA和Ripple_Adder。