我有一个离散的时间序列,如下所示:
product_id date sales_per_day
VSG19 2018-05-19 1.00000000000000
VSG19 2018-05-23 1.00000000000000
VSG19 2018-05-24 2.00000000000000
VSG19 2018-06-25 1.00000000000000
VSG19 2018-07-26 1.00000000000000
VSG19 2018-07-28 1.00000000000000
VSG19 2018-08-01 1.00000000000000
VSG19 2018-08-11 1.00000000000000
VSG19 2018-08-29 1.00000000000000
VSG19 2018-09-11 1.00000000000000
VSG19 2018-09-29 1.00000000000000
VSG19 2018-10-16 1.00000000000000
VSG19 2018-10-25 1.00000000000000
VSG19 2018-11-02 1.00000000000000
我想为此计算线性加权平均值,但我的数据不包含没有销售发生的日子。
我已经通过加入日历表解决了该问题,但是我不喜欢这种解决方案。 您知道解决此问题的优雅方法吗?
谢谢!
PS-以下是LWMA的公式:https://en.wikipedia.org/wiki/Moving_average#Weighted_moving_average
答案 0 :(得分:0)
我对这种特定的计算方法不太熟悉,但是根据我刚刚阅读的内容,您应该能够使用“窗口框架”来计算“将权重分配给过去销售的滚动信息”。 没有看到您正在应用的实际公式,就无法确定天气是否会奏效。
以下只是我脑海中的一个例子...
IF OBJECT_ID('tempdb..#TestData', 'U') IS NOT NULL
DROP TABLE #TestData;
CREATE TABLE #TestData (
product_id CHAR(5) NOT NULL,
[date] DATE NOT NULL,
sales_per_day DECIMAL(19,14) NOT NULL
);
INSERT #TestData (product_id, date, sales_per_day) VALUES
('VSG19', '2018-05-19', 1.00000000000000),
('VSG19', '2018-05-23', 1.00000000000000),
('VSG19', '2018-05-24', 2.00000000000000),
('VSG19', '2018-06-25', 1.00000000000000),
('VSG19', '2018-07-26', 1.00000000000000),
('VSG19', '2018-07-28', 1.00000000000000),
('VSG19', '2018-08-01', 1.00000000000000),
('VSG19', '2018-08-11', 1.00000000000000),
('VSG19', '2018-08-29', 1.00000000000000),
('VSG19', '2018-09-11', 1.00000000000000),
('VSG19', '2018-09-29', 1.00000000000000),
('VSG19', '2018-10-16', 1.00000000000000),
('VSG19', '2018-10-25', 1.00000000000000),
('VSG19', '2018-11-02', 1.00000000000000);
--===============================================================
SELECT
*,
days_since_last_sale = ISNULL(DATEDIFF(DAY, MAX(td.date) OVER (ORDER BY td.date ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING), td.date), 0),
days_from_first_sale = ISNULL(DATEDIFF(DAY, MIN(td.date) OVER (ORDER BY td.date), td.date), 0)
FROM
#TestData td;