如何使用sklearn库在逻辑回归模型中使用内核?
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
predicted= logreg.predict(predict)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
答案 0 :(得分:2)
非常好的问题,但是uniq
当前不支持内核逻辑回归和ANOVA内核。
您可以实现它。
ANOVA内核的示例1:
scikit-learn
Nyström的示例2:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have split the data and here, train are the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨