我需要根据列Quadrat
的值创建一个新的因子列。有9个正交词,称为Sponge
的新列将类似于:
如果Quadrat
= 1,4,9,则为“旧增长”
如果Quadrat
= 3,6,7
,则为“缺席”
如果Quadrat
= 2,5,8
很抱歉,如果答案很简单,我做了检查:How to convert integer to factor in R?
而且我也在尝试使用recode_factor
。这是我的代码:
library(dplyr)
key <- list(`1,4,9` = "Old Growth", `3,6,7` = "Absent", `2,5,8` = "New Growth")
df <- mutate(df, Sponge = recode_factor(Quadrat, key))
我收到错误消息:
Error in mutate_impl(.data, dots) :
Evaluation error: Vector 1 must be length 108 or one, not 3.
如果重要的话,实际数据比我在此处包含的数据集具有更多的条目。谢谢您的帮助。
df <- structure(list(Quadrat = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L,
9L, 9L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L,
5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 1L, 1L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L,
7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L,
9L, 9L, 9L), Month = structure(c(4L, 4L, 4L, 3L, 3L, 3L, 7L,
7L, 7L, 1L, 1L, 1L, 8L, 8L, 8L, 6L, 6L, 6L, 5L, 5L, 5L, 2L, 2L,
2L, 9L, 9L, 9L, 4L, 4L, 4L, 3L, 3L, 3L, 7L, 7L, 7L, 1L, 1L, 1L,
8L, 8L, 8L, 6L, 6L, 6L, 5L, 5L, 5L, 2L, 2L, 2L, 9L, 9L, 9L, 4L,
4L, 4L, 3L, 3L, 3L, 7L, 7L, 7L, 1L, 1L, 1L, 8L, 8L, 8L, 6L, 6L,
6L, 5L, 5L, 5L, 2L, 2L, 2L, 9L, 9L, 9L, 4L, 4L, 4L, 3L, 3L, 3L,
7L, 7L, 7L, 1L, 1L, 1L, 8L, 8L, 8L, 6L, 6L, 6L, 5L, 5L, 5L, 2L,
2L, 2L, 9L, 9L, 9L), .Label = c("Apr", "Aug", "Feb", "Jan", "Jul",
"Jun", "Mar", "May", "Sep"), class = "factor"), PopDens = c(65.6011820777785,
18.4913752602879, 12.151802276494, 68.0740840677172, 50.9832500135526,
36.8684287818614, 52.0825074084569, 26.8776902493555, 49.2173263626173,
25.5460870559327, 5.4171769618988, 34.4303709487431, 44.3439512783661,
2.25230997451581, 61.2502326716203, 25.9035727053415, 32.339118222706,
24.1017888628412, 12.340617884649, 53.3521768709179, 26.0048255382571,
52.8581868957262, 31.9503199581522, 18.1601244299673, 34.228305231547,
2.09199664392509, 22.6402857622597, 4.48008164577186, 48.2082461479586,
65.4937081446406, 5.43837511213496, 32.8203339113388, 4.44421968702227,
19.8568186087068, 24.2561273102183, 12.3652934685815, 39.0541164302267,
16.1970243314281, 12.9826903613284, 36.3537323835772, 48.7148000504822,
11.5067498446442, 68.7493303583469, 60.7505214684643, 49.3874175737146,
63.0705459746532, 23.721419940237, 53.4379795142449, 57.7867246468086,
38.4747762591578, 8.43540686019696, 20.5636212413665, 28.7687741059344,
53.2144687068649, 32.0859562589321, 10.5120962983929, 53.4312571119517,
13.6547974413261, 31.3038802060764, 14.5005466006696, 6.03453303268179,
62.6867637028918, 17.7734197168611, 11.0327071261127, 51.4377708046231,
26.8335341704078, 9.81126144807786, 43.993699422339, 20.5123583010864,
14.9305799969006, 23.8019575944636, 39.1543961388525, 30.4534046472982,
61.2751477411948, 48.0770866076928, 59.4514226955362, 42.9857548968866,
23.0139948409051, 1.76873184926808, 33.1222371393815, 10.8652087603696,
24.5235243474599, 62.4086231633555, 55.6522683221847, 68.8337469024118,
48.2195318546146, 6.75986870843917, 57.7931131315418, 18.2255988919642,
40.8185531077906, 38.066848333925, 31.8611310839187, 22.2724406518973,
51.7982920755167, 29.2363496678881, 35.541056742426, 66.5265460675582,
28.267403066624, 40.5209824540652, 31.8187582066748, 67.2972998009063,
53.6718824433628, 42.6495425191242, 31.6603209995665, 44.3039192620199,
21.6216275517363, 66.9763269643299, 36.3314134527463)), .Names = c("Quadrat",
"Month", "PopDens"), row.names = c(NA, -108L), class = "data.frame")
答案 0 :(得分:1)
将mutate
与factor
函数一起使用
df %>% mutate(Quadrat2 =
factor(Quadrat, levels = 1:9,
labels =rep(c("Old Growth", "New Growth", "Absent"),3)
)
)
答案 1 :(得分:1)
如果我们使用的是recode_factor
,请创建具有单独组件的list
,而不是paste
ed
key <- setNames(as.list(rep(c("Old Growth", "Absent", "New Growth"),
each = 3)), c(1, 4, 9, 3, 6, 7, 2, 5, 8))
df %>%
mutate(Sponge = recode_factor(Quadrat, !!! key)) %>%
head
# Quadrat Month PopDens Sponge
#1 1 Jan 65.60118 Old Growth
#2 1 Jan 18.49138 Old Growth
#3 1 Jan 12.15180 Old Growth
#4 2 Feb 68.07408 New Growth
#5 2 Feb 50.98325 New Growth
#6 2 Feb 36.86843 New Growth