在某些功能上,欧拉能否比Runge-Kutta好?

时间:2018-10-31 08:15:21

标签: numpy numerical-methods differential-equations runge-kutta

我正在尝试解决史蒂文·斯特罗加兹(Steven Strogatz)的《非线性动力学和混沌》中的练习。在练习2.8.3、2.8.4和2.8.5中,期望对初值问题dx / dt = -x分别实施Euler方法,改进的Euler方法和Runge-Kutta(四阶)方法。 x(0)= 1以找到x(1)。

从分析上来说,答案是1 / e。而且我正在发现每种方法中获得的错误。令我惊讶的是,与改进的欧拉和朗格-库塔相比,欧拉的错误更少!

我的代码如下所示。对不起,很抱歉。

from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt

to = 0
xo = 1
tf = 1

deltaT = np.zeros([5])
errorE = np.zeros([5])
errorIE = np.zeros([5])
errorRK = np.zeros([5])


for j in range(0,5):
  n = pow(10,j)
  deltat = (tf - to)/(n)

  print ("delta t is",deltat)

  deltaT[j] = deltat

  t = np.linspace(to,tf,n)
  xE = np.zeros([n])
  xIE = np.zeros([n])
  xRK = np.zeros([n])

  xE[0] = xo
  xIE[0] = xo
  xRK[0] = xo

  for i in range (1,n):
    #Regular Euler
    xE[i] = deltat*(-xE[i-1]) + xE[i-1]

    #Improved Euler
    IEintermediate = deltat*(-xIE[i-1]) + xIE[i-1]
    xIE[i] = xIE[i-1] - deltat*(xIE[i-1] + IEintermediate)/2 

    #Runge-Kutta fourth order
    k1 = -deltat*xRK[i-1]
    k2 = -deltat*(xRK[i-1] + k1/2)
    k3 = -deltat*(xRK[i-1] + k2/2)
    k4 = -deltat*(xRK[i-1] + k3)

    xRK[i] = xRK[i-1] + (k1 + 2*k2 + 2*k3 + k4)/6

    print (deltat,xE[i],xIE[i],xRK[i])

  errorE[j] = np.exp(-1) - xE[n-1]
  errorIE[j] = np.exp(-1) - xIE[n-1]
  errorRK[j] = np.exp(-1) - xRK[n-1]

错误:

对于delT = 1.0

  • Euler错误是-0.6321205588285577
  • I.Euler错误是-0.6321205588285577
  • RK错误为-0.6321205588285577

对于delT = 0.1

  • Euler错误-0.019541047828557645
  • I.Euler错误-0.039348166379443716
  • RK错误-0.03869055002863331

对于delT = 0.01

  • 欧拉-0.0018501964782845493
  • I.Euler -0.003703427083890265
  • RK -0.0036972498815148747

对于delT = 0.001

  • 欧拉-0.0001840470877806366
  • I.Euler -0.00036812480143849635
  • RK-0.00036806344222467535

对于delT = 0.0001

  • 欧拉-1.839504510836587e-05
  • I.Euler -3.67903967520844e-05
  • RK -3.678978357835039e-05

这是合法的吗?如果没有,为什么会这样?

1 个答案:

答案 0 :(得分:3)

您仅执行n-1个步长为h=1/n的积分步,因此您可以计算

exp(-(n-1)/n)=1/e*exp(1/n) 

具有近似值

1/e + 1/e*1/n

报告的错误值恰好是-h/e,它是一阶的,因此被1阶Euler方法明显地扭曲了。欧拉值更准确

(1-1/n)^(n-1) = exp((n-1)*(-1/n-1/(2n^2)+O(1/n^3))
              = 1/e*exp(1/(2n)+..)
              = 1/e + h/(2e) + ... 

如果您修改代码以达到到达时间1的额外步骤,则会得到正确的错误图片。

delta t is  1.0
Euler          0.0             0.367879441171
imp. Euler     0.5            -0.132120558829
Runge-Kutta 4  0.375          -0.00712055882856

delta t is  0.1
Euler          0.3486784401    0.0192010010714
imp. Euler     0.368540984834 -0.00066154366211
Runge-Kutta 4  0.367879774412 -3.33241056083e-07

delta t is  0.01
Euler          0.366032341273  0.00184709989821
imp. Euler     0.367885618716 -6.17754474969e-06
Runge-Kutta 4  0.367879441202 -3.09130498977e-11

delta t is  0.001
Euler          0.367695424771  0.000184016400479
imp. Euler     0.367879502531 -6.13592486265e-08
Runge-Kutta 4  0.367879441171 -4.05231403988e-15

delta t is  0.0001
Euler          0.367861046433  1.83947385133e-05
imp. Euler     0.367879441785 -6.13176398545e-10
Runge-Kutta 4  0.367879441171 -2.6645352591e-15