我的项目需要帮助。我正在使用Atollic TrueSTUDIO,CubeMX和FreeRTOS。我有一个项目,在该项目中我从ADC检索了数据,并试图通过USB发送数据。在调试停止并出现HardFault_Handler()
之后,一切正常,直到我在PC上打开端口(我正在尝试HTerm,RealTerm等)之后。
这是我的main.c(一切由CubeMX为FreeRTOS生成:
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
#include "usb_device.h"
/* USER CODE BEGIN Includes */
#include "usbd_cdc_if.h"
#include "time.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_memtomem_dma2_stream0;
osThreadId defaultTaskHandle;
osThreadId sendTaskHandle;
osThreadId recivedTaskHandle;
osThreadId prepareTaskHandle;
osSemaphoreId myBinarySem01Handle;
osSemaphoreId myBinarySem02Handle;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define length 2048
uint16_t preparedData[(length/8)];
uint8_t dataToSend[(length/16)];
uint16_t recivedData[(length/2)];
uint8_t sendCounter = 0;
clock_t start, end;
int cpu_time_used = 0;
SemaphoreHandle_t xSemaphore = NULL;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
void StartDefaultTask(void const * argument);
void StartSendTask(void const * argument);
void StartADCTask(void const * argument);
void StartPrepareTask(void const * argument);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
*
* @retval None
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* Create the semaphores(s) */
/* definition and creation of myBinarySem01 */
osSemaphoreDef(myBinarySem01);
myBinarySem01Handle = osSemaphoreCreate(osSemaphore(myBinarySem01), 1);
/* definition and creation of myBinarySem02 */
osSemaphoreDef(myBinarySem02);
myBinarySem02Handle = osSemaphoreCreate(osSemaphore(myBinarySem02), 1);
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of sendTask */
osThreadDef(sendTask, StartSendTask, osPriorityNormal, 0, 512);
sendTaskHandle = osThreadCreate(osThread(sendTask), NULL);
/* definition and creation of recivedTask */
osThreadDef(recivedTask, StartADCTask, osPriorityNormal, 0, 1024);
recivedTaskHandle = osThreadCreate(osThread(recivedTask), NULL);
/* definition and creation of prepareTask */
osThreadDef(prepareTask, StartPrepareTask, osPriorityNormal, 0, 1024);
prepareTaskHandle = osThreadCreate(osThread(prepareTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 72;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
/**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_12;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_13;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/**
* Enable DMA controller clock
* Configure DMA for memory to memory transfers
* hdma_memtomem_dma2_stream0
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* Configure DMA request hdma_memtomem_dma2_stream0 on DMA2_Stream0 */
hdma_memtomem_dma2_stream0.Instance = DMA2_Stream0;
hdma_memtomem_dma2_stream0.Init.Channel = DMA_CHANNEL_0;
hdma_memtomem_dma2_stream0.Init.Direction = DMA_MEMORY_TO_MEMORY;
hdma_memtomem_dma2_stream0.Init.PeriphInc = DMA_PINC_ENABLE;
hdma_memtomem_dma2_stream0.Init.MemInc = DMA_MINC_ENABLE;
hdma_memtomem_dma2_stream0.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_memtomem_dma2_stream0.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_memtomem_dma2_stream0.Init.Mode = DMA_NORMAL;
hdma_memtomem_dma2_stream0.Init.Priority = DMA_PRIORITY_LOW;
hdma_memtomem_dma2_stream0.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_memtomem_dma2_stream0.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_memtomem_dma2_stream0.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_memtomem_dma2_stream0.Init.PeriphBurst = DMA_PBURST_SINGLE;
if (HAL_DMA_Init(&hdma_memtomem_dma2_stream0) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/* DMA interrupt init */
/* DMA2_Stream4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream4_IRQn);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* init code for USB_DEVICE */
MX_USB_DEVICE_Init();
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
// vTaskResume( sendTaskHandle );
// vTaskResume( prepareTaskHandle );
// vTaskResume( recivedTaskHandle );
// vTaskSuspend( defaultTaskHandle );
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_StartSendTask */
/**
* @brief Function implementing the sendTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartSendTask */
void StartSendTask(void const * argument)
{
/* USER CODE BEGIN StartSendTask */
MX_USB_DEVICE_Init();
/* Infinite loop */
for(;;)
{
if( xSemaphoreTake( myBinarySem01Handle, ( TickType_t ) 100 ) )
{
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
volatile uint8_t send = CDC_Transmit_FS( dataToSend, (length/16) );
if( xSemaphoreGive( myBinarySem01Handle ) == pdTRUE )
{
taskYIELD();
}
} else {
taskYIELD();
}
}
/* USER CODE END StartSendTask */
}
/* USER CODE BEGIN Header_StartADCTask */
/**
* @brief Function implementing the recivedTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartADCTask */
void StartADCTask(void const * argument)
{
/* USER CODE BEGIN StartADCTask */
/* Infinite loop */
for(;;)
{
if( xSemaphoreTake( myBinarySem01Handle, ( TickType_t ) 100 ) )
{
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
for( int i = 0 ; i < (length/8) ; i++ ){
HAL_ADC_Start_DMA( &hadc1, recivedData, (length/2));
}
if( xSemaphoreGive( myBinarySem01Handle ) == pdTRUE )
{
taskYIELD();
}
} else {
taskYIELD();
}
}
/* USER CODE END StartADCTask */
}
/* USER CODE BEGIN Header_StartPrepareTask */
/**
* @brief Function implementing the prepareTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartPrepareTask */
void StartPrepareTask(void const * argument)
{
/* USER CODE BEGIN StartPrepareTask */
/* Infinite loop */
for(;;)
{
if( xSemaphoreTake( myBinarySem01Handle, ( TickType_t ) 100 ) )
{
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
volatile uint8_t counter = 0;
for( int i = 0; i < (length / ( 2 * 16 * 4)); i ++){
for( int j = 0; j < 16; j++){
preparedData[counter] += recivedData[i * 16 + j * 4];
preparedData[counter + 1] += recivedData[i * 16 + j * 4 + counter + 1];
preparedData[counter + 2] += recivedData[i * 16 + j * 4 + counter + 2];
preparedData[counter + 3] += recivedData[i * 16 + j * 4 + counter + 3];
}
counter += 4;
}
for( int i = 0; i < (length / 16); i += 2){
dataToSend[0 + i] = preparedData[i / 2] >> 8;
dataToSend[1 + i] = (preparedData[i / 2] << 8) >> 8;
}
if( xSemaphoreGive( myBinarySem01Handle ) == pdTRUE )
{
taskYIELD();
}
} else {
taskYIELD();
}
}
/* USER CODE END StartPrepareTask */
}
/**
* @brief This function is executed in case of error occurrence.
* @param file: The file name as string.
* @param line: The line in file as a number.
* @retval None
*/
void _Error_Handler(char *file, int line)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
这是我的usbd_cdc_if.c:
/* Includes ------------------------------------------------------------------*/
#include "usbd_cdc_if.h"
/* USER CODE BEGIN INCLUDE */
/* USER CODE END INCLUDE */
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY
* @brief Usb device library.
* @{
*/
/** @addtogroup USBD_CDC_IF
* @{
*/
/** @defgroup USBD_CDC_IF_Private_TypesDefinitions USBD_CDC_IF_Private_TypesDefinitions
* @brief Private types.
* @{
*/
/* USER CODE BEGIN PRIVATE_TYPES */
/* USER CODE END PRIVATE_TYPES */
/**
* @}
*/
/** @defgroup USBD_CDC_IF_Private_Defines USBD_CDC_IF_Private_Defines
* @brief Private defines.
* @{
*/
/* USER CODE BEGIN PRIVATE_DEFINES */
/* Define size for the receive and transmit buffer over CDC */
/* It's up to user to redefine and/or remove those define */
#define APP_RX_DATA_SIZE 128
#define APP_TX_DATA_SIZE 128
/* USER CODE END PRIVATE_DEFINES */
/**
* @}
*/
/** @defgroup USBD_CDC_IF_Private_Macros USBD_CDC_IF_Private_Macros
* @brief Private macros.
* @{
*/
/* USER CODE BEGIN PRIVATE_MACRO */
/* USER CODE END PRIVATE_MACRO */
/**
* @}
*/
/** @defgroup USBD_CDC_IF_Private_Variables USBD_CDC_IF_Private_Variables
* @brief Private variables.
* @{
*/
/* Create buffer for reception and transmission */
/* It's up to user to redefine and/or remove those define */
/** Received data over USB are stored in this buffer */
uint8_t UserRxBufferFS[APP_RX_DATA_SIZE];
/** Data to send over USB CDC are stored in this buffer */
uint8_t UserTxBufferFS[APP_TX_DATA_SIZE];
/* USER CODE BEGIN PRIVATE_VARIABLES */
/* USER CODE END PRIVATE_VARIABLES */
/**
* @}
*/
/** @defgroup USBD_CDC_IF_Exported_Variables USBD_CDC_IF_Exported_Variables
* @brief Public variables.
* @{
*/
extern USBD_HandleTypeDef hUsbDeviceFS;
/* USER CODE BEGIN EXPORTED_VARIABLES */
/* USER CODE END EXPORTED_VARIABLES */
/**
* @}
*/
/** @defgroup USBD_CDC_IF_Private_FunctionPrototypes USBD_CDC_IF_Private_FunctionPrototypes
* @brief Private functions declaration.
* @{
*/
static int8_t CDC_Init_FS(void);
static int8_t CDC_DeInit_FS(void);
static int8_t CDC_Control_FS(uint8_t cmd, uint8_t* pbuf, uint16_t length);
static int8_t CDC_Receive_FS(uint8_t* pbuf, uint32_t *Len);
/* USER CODE BEGIN PRIVATE_FUNCTIONS_DECLARATION */
/* USER CODE END PRIVATE_FUNCTIONS_DECLARATION */
/**
* @}
*/
USBD_CDC_ItfTypeDef USBD_Interface_fops_FS =
{
CDC_Init_FS,
CDC_DeInit_FS,
CDC_Control_FS,
CDC_Receive_FS
};
/* Private functions ---------------------------------------------------------*/
/**
* @brief Initializes the CDC media low layer over the FS USB IP
* @retval USBD_OK if all operations are OK else USBD_FAIL
*/
static int8_t CDC_Init_FS(void)
{
/* USER CODE BEGIN 3 */
/* Set Application Buffers */
USBD_CDC_SetTxBuffer(&hUsbDeviceFS, UserTxBufferFS, 0);
USBD_CDC_SetRxBuffer(&hUsbDeviceFS, UserRxBufferFS);
return (USBD_OK);
/* USER CODE END 3 */
}
/**
* @brief DeInitializes the CDC media low layer
* @retval USBD_OK if all operations are OK else USBD_FAIL
*/
static int8_t CDC_DeInit_FS(void)
{
/* USER CODE BEGIN 4 */
return (USBD_OK);
/* USER CODE END 4 */
}
/**
* @brief Manage the CDC class requests
* @param cmd: Command code
* @param pbuf: Buffer containing command data (request parameters)
* @param length: Number of data to be sent (in bytes)
* @retval Result of the operation: USBD_OK if all operations are OK else USBD_FAIL
*/
static int8_t CDC_Control_FS(uint8_t cmd, uint8_t* pbuf, uint16_t length)
{
/* USER CODE BEGIN 5 */
switch(cmd)
{
case CDC_SEND_ENCAPSULATED_COMMAND:
break;
case CDC_GET_ENCAPSULATED_RESPONSE:
break;
case CDC_SET_COMM_FEATURE:
break;
case CDC_GET_COMM_FEATURE:
break;
case CDC_CLEAR_COMM_FEATURE:
break;
/*******************************************************************************/
/* Line Coding Structure */
/*-----------------------------------------------------------------------------*/
/* Offset | Field | Size | Value | Description */
/* 0 | dwDTERate | 4 | Number |Data terminal rate, in bits per second*/
/* 4 | bCharFormat | 1 | Number | Stop bits */
/* 0 - 1 Stop bit */
/* 1 - 1.5 Stop bits */
/* 2 - 2 Stop bits */
/* 5 | bParityType | 1 | Number | Parity */
/* 0 - None */
/* 1 - Odd */
/* 2 - Even */
/* 3 - Mark */
/* 4 - Space */
/* 6 | bDataBits | 1 | Number Data bits (5, 6, 7, 8 or 16). */
/*******************************************************************************/
case CDC_SET_LINE_CODING:
break;
case CDC_GET_LINE_CODING:
break;
case CDC_SET_CONTROL_LINE_STATE:
break;
case CDC_SEND_BREAK:
break;
default:
break;
}
return (USBD_OK);
/* USER CODE END 5 */
}
/**
* @brief Data received over USB OUT endpoint are sent over CDC interface
* through this function.
*
* @note
* This function will block any OUT packet reception on USB endpoint
* untill exiting this function. If you exit this function before transfer
* is complete on CDC interface (ie. using DMA controller) it will result
* in receiving more data while previous ones are still not sent.
*
* @param Buf: Buffer of data to be received
* @param Len: Number of data received (in bytes)
* @retval Result of the operation: USBD_OK if all operations are OK else USBD_FAIL
*/
static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
/* USER CODE BEGIN 6 */
USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
USBD_CDC_ReceivePacket(&hUsbDeviceFS);
return (USBD_OK);
/* USER CODE END 6 */
}
/**
* @brief CDC_Transmit_FS
* Data to send over USB IN endpoint are sent over CDC interface
* through this function.
* @note
*
*
* @param Buf: Buffer of data to be sent
* @param Len: Number of data to be sent (in bytes)
* @retval USBD_OK if all operations are OK else USBD_FAIL or USBD_BUSY
*/
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{
uint8_t result = USBD_OK;
/* USER CODE BEGIN 7 */
USBD_CDC_HandleTypeDef *hcdc = (USBD_CDC_HandleTypeDef*)hUsbDeviceFS.pClassData;
if (hcdc->TxState != 0){
return USBD_BUSY;
}
USBD_CDC_SetTxBuffer(&hUsbDeviceFS, Buf, Len);
result = USBD_CDC_TransmitPacket(&hUsbDeviceFS);
/* USER CODE END 7 */
return result;
}
有人可以帮我吗?
答案 0 :(得分:0)
我自己解决了这个问题,很抱歉收到垃圾邮件线程。但是如果对使用Queue的人有帮助的话。
这是在CubeMX中添加2个队列(recivedData 1024 uint16_t和dataToSend 128 uint8_t)后我的代码的样子:
void StartSendTask(void const * argument)
{
/* USER CODE BEGIN StartSendTask */
MX_USB_DEVICE_Init();
/* Infinite loop */
for(;;)
{
if( xQueueReceive(dataToSendHandle, sender, 10) ){
if( xSemaphoreTake( myBinarySem02Handle, ( TickType_t ) 10 ) )
{
counter4++;
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
volatile uint8_t send = CDC_Transmit_FS( sender, (length/8) );
xSemaphoreGive( myBinarySem02Handle );
}
}
}
/* USER CODE END StartSendTask */
}
/* USER CODE BEGIN Header_StartADCTask */
/**
* @brief Function implementing the recivedTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartADCTask */
void StartADCTask(void const * argument)
{
/* USER CODE BEGIN StartADCTask */
/* Infinite loop */
for(;;)
{
if( xSemaphoreTake( myBinarySem01Handle, ( TickType_t ) 10 ) )
{
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
counter1++;
for( int i = 0 ; i < (length/4) ; i++ ){
HAL_ADC_Start_DMA( &hadc1, reciver, length);
}
if( xSemaphoreGive( myBinarySem01Handle ) == pdTRUE )
{
xQueueSend(recivedDataHandle, reciver, 10);
vTaskDelay(1);
}
}
}
/* USER CODE END StartADCTask */
}
/* USER CODE BEGIN Header_StartPrepareTask */
/**
* @brief Function implementing the prepareTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartPrepareTask */
void StartPrepareTask(void const * argument)
{
/* USER CODE BEGIN StartPrepareTask */
/* Infinite loop */
for(;;)
{
if( xQueueReceive(recivedDataHandle, reciver, 10) ){
HAL_GPIO_WritePin( LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin( LD2_GPIO_Port, LD2_Pin) );
counter2++;
if( xSemaphoreTake( myBinarySem01Handle, ( TickType_t ) 10 ) )
{
if( xSemaphoreTake( myBinarySem02Handle, ( TickType_t ) 10 ) )
{
volatile uint8_t counter = 0;
for( int i = 0; i < (length / (16 * 4)); i ++){
for( int j = 0; j < 16; j++){
prepared[counter] += reciver[i * 16 + j * 4 + counter];
prepared[counter + 1] += reciver[i * 16 + j * 4 + counter + 1];
prepared[counter + 2] += reciver[i * 16 + j * 4 + counter + 2];
prepared[counter + 3] += reciver[i * 16 + j * 4 + counter + 3];
}
counter += 4;
}
if( xSemaphoreGive( myBinarySem02Handle ) == pdTRUE )
{
xSemaphoreGive( myBinarySem01Handle );
}
} else {
xSemaphoreGive( myBinarySem01Handle );
}
}
if( xSemaphoreTake( myBinarySem02Handle, ( TickType_t ) 10 ) )
{
counter3++;
for( int i = 0; i < (length / 8); i += 2){
sender[0 + i] = prepared[i / 2] >> 8;
sender[1 + i] = (prepared[i / 2] << 8) >> 8;
}
if( xSemaphoreGive( myBinarySem02Handle ) == pdTRUE )
{
xQueueSend(dataToSendHandle, sender, 10);
}
}
}
}
/* USER CODE END StartPrepareTask */
}