我正在遵循此guide,内容涉及如何将特征绘制到系统发育上,以确定特征保守性。我已逐步遵循它,但似乎无法使系统发育的群落组成或性状图完全适用于我的数据集。我已经按照他们说的进行了格式化,就像他们发送给我的示例数据一样。
我不确定如何在此处放置树文件,因此这里是all species的云链接上的树,这是我仅将native species用于特征绘制的树 >
VegComm <- df2vec(as.matrix(Veg2018), colID = 1:29) #community data
STraits <- read.csv()
rownames(STraits)<- STraits[,1]
STraits[1:1] <- list(NULL) #Trait Data
STraits <- df2vec(as.matrix.data.frame(STraits), colID=1:5)
STraits <- STraits[1:6,]
str(STraits)
prune.sample(VegComm,alltree)
par(mfrow=c(2,2))
for (i in colnames(STraits)) {
+ plot(nativetree, show.tip.label=TRUE, main=i)
+ tiplabels(pch=22, col=STraits[,i]+1, bg=STraits[,i]+1, cex=1.5)}
traits <- STraits[nativetree$tip.label,]
phylosignal(nativetree, STraits, nsim=1000, method="K")
以下是社区数据:
Avena_fatua Bromus_diandrus Bromus_hordeaceus Festuca_myuros Festuca_perennis Carduus_pycnocephalus Cirsium_vulgare Erodium_cicutarium Geranium_dissectum Helminthotheca_echioides Lactuca_serriola Medicago_polymorpha Oxalis_pes-caprae Raphanus_sativus Senecio_vulgaris Sonchus_oleraceus Vicia_sativa Artemisia_californica Baccharis_pilularis Ericameria_ericoides Mimulus_aurantiacus Bromus_carinatus Elymus_triticoides Hordeum_brachyantherum Stipa_pulchra Achillea_millefolium Eschscholzia_californica Lupinus_variicolor Echium_candicans
PC1 0 1.25 0 20.83333333 7.416666667 0.5 0 0 21.25 0.333333333 0 6.916666667 0 4.916666667 0 0 0 4.583333333 18.33333333 1.25 0.833333333 0.5 0 0 0 7.5 1.25 0 0
PC2 0.5 0 0.333333333 14.16666667 2.25 0 0 0 25 0 1.916666667 30.41666667 0 3.666666667 0.833333333 0.833333333 0 0 17.91666667 0 0 2.083333333 0 0 0 3.333333333 0 0 0
PC3 0.333333333 4.083333333 0 27.5 3.333333333 6.083333333 0 0 15.83333333 1.75 2.416666667 3.833333333 0 6.666666667 0 5.916666667 0 1.25 2.083333333 0 2.5 5.416666667 0 0 1.25 5 0 0 0
PC4 0.333333333 1.25 3.333333333 10.41666667 15.83333333 5.833333333 0 0 25.83333333 0 1.583333333 10.75 0 5.833333333 0 1.25 0 0 2.083333333 0 0 0 0 0 0 3.416666667 2.916666667 0 0
PC5 1.916666667 0 8.833333333 10.91666667 6.666666667 0 0.333333333 0 15 1.25 1.75 0 0 3.333333333 0 10.83333333 0.5 0 3.333333333 0.5 0 4.666666667 0 0 0.5 9.166666667 0 0 0.666666667
PS1 0.333333333 3 0 6.25 2.25 16 0 0 11.41666667 0.333333333 0 3.833333333 0 0.833333333 0 1.166666667 0 0 12 0 0.166666667 3.333333333 0 0 0 49.16666667 0 0 0
PS2 2.25 4 0 6.5 1.25 13.75 0 4.166666667 10.5 0 0 6.666666667 0 4.5 0 0 0 1.583333333 3.833333333 0 4.166666667 4.166666667 0 0 1.25 22.91666667 1.25 0 0
PS3 2.5 0 0 5.083333333 1.25 0.833333333 0 5.916666667 20.83333333 0 0 16.66666667 0 7.583333333 0 1.333333333 0 0 4.5 0 0 0.333333333 0 0 1.75 25.41666667 0 0 0
PS4 2.25 0 1.5 2.5 1.75 0 2.5 0 22.91666667 0 0 19.16666667 2.916666667 18.33333333 0 0 0 2.916666667 6.666666667 0 1.25 5.5 0 0 4.583333333 8.75 0 2.5 0
PS5 4.75 0 1.75 7 2.083333333 4.666666667 0 0 18.08333333 0 0 4.25 0 13.75 0 0 0 0 0 0 0 0 0 0 0 34.33333333 0 0 0
PW1 4.75 1.75 0.666666667 11.83333333 4.916666667 0 0 0 15 2.833333333 1.25 39.16666667 0 0.666666667 0 3.833333333 0 0 4.166666667 0 0 0.833333333 0 0 0 14.16666667 0.666666667 0 1.25
PW2 2.5 0 4 21.66666667 4.666666667 0.5 0 0 25.41666667 0 1.25 7.083333333 0 14.58333333 0 0.833333333 0 1.25 1.25 0 0 3.333333333 0 0 1.25 4.166666667 1 0 0
PW3 1.583333333 1.25 0 10.66666667 4.25 5.75 0 0 12.5 0 1.5 30 0 0.333333333 0 0.333333333 0 3.833333333 0 0 0 2.083333333 0 0 4.583333333 10 0 0 0
PW4 0 1.25 6.666666667 9.916666667 8.25 0 0 0 33.33333333 0 0 5.833333333 0 5.833333333 0 2.083333333 0 0 1.25 0 0 2.5 0 0 0 3.75 1.583333333 0 0
PW5 2.25 2.083333333 0.333333333 10.41666667 4.416666667 1.25 0 0 23.33333333 0 0 4.583333333 0 5.083333333 0 0 13.33333333 12.66666667 8.333333333 0 0 0 0 0 0 12 0 0 0
以下是特征数据:(我尝试忽略而不是忽略NA)
Growth_Rate Area AreaVar SLA SLAVar VLA VLAVar Thickness ThicknessVar logThickness logThicknessVar LV LVVar PD0 PD10 PD50 CPD
Achillea_millefolium 0.090888257 15.80656659 12.43783158 NA NA NA NA 0.249744167 0.187092582 -1.553441666 0.458076381 NA NA 12.61566 29.016 250 0.721921544
Artemisia_californica 0.035049437 14.56355219 11.78670881 180.1322546 99.50427931 9.364236482 1.414207935 0.268703703 0.074128238 -1.352780779 0.298806173 43.22157529 13.35296757 12.61566 29.016 250 0.721921544
Bromus_carinatus 0.022607407 2.384166667 2.316140235 NA NA NA NA NA NA NA NA NA NA 5.41269 11.7111 315.3334 0.681203858
Ericameria_ericoides 0.019809977 3.6875 1.703521078 NA NA NA NA NA NA NA NA NA NA 12.61566 29.016 250 0.721921544
Eschscholzia_californica 0.029380702 1.245833333 1.076820745 262.1630059 60.49033956 4.392284625 0.596306575 0.16357684 0.038660691 -1.835819399 0.223972815 39.80718218 11.25985865 294 294 294 0.577356321
Hosackia_gracilis 0.009183502 NA NA NA NA NA NA NA NA NA NA NA NA 41.81336 101.22 250 0.638988811
Lupinus_nanus 0.040867178 NA NA NA NA NA NA NA NA NA NA NA NA 33.60001 101.22 250 0.640373244
Lupinus_variicolor 0.028428463 NA NA NA NA NA NA NA NA NA NA NA NA 33.60001 101.22 250 0.640373244
Mimulus_aurantiacus 0.00652489 0.00652489 0.011364841 3.412857143 2.976064883 151.5001201 79.68333552 2.370279914 0.731201273 0.285257143 0.120154396 37.54090305 16.93270863 183.7778 209.3333 250 0.622318052
Sisyrinchium_bellum 0.01441308 5.477777778 5.117901992 181.6818246 42.91299583 2.954769874 0.448780843 0.176855556 0.018545802 -1.735344864 0.107673785 31.80493389 4.311588188 225.2889 225.2889 315.3334 0.594958509
Sidalcea_malviflora 0.020075948 4.974358974 4.901863202 142.4036892 39.11274955 1.651824981 0.295753475 0.148082051 0.045211395 -1.953346759 0.300665842 20.91557187 8.108682659 163.3333 193 250 0.625836637
Stipa_pulchra 0.01546666 5.28968254 6.055307558 122.3827137 32.67582669 7.352684101 3.027753522 0.149629537 0.031130015 -1.943799376 0.210327301 17.91978995 5.823172424 24 24 315.3334 0.611910294
以下是dput
的输出:
> dput(STraits)
structure(c(0.035049437, 0.029380702, 0.00652489, 0.01441308,
0.020075948, 0.01546666, 14.56355219, 1.245833333, 0.00652489,
5.477777778, 4.974358974, 5.28968254, 11.78670881, 1.076820745,
0.011364841, 5.117901992, 4.901863202, 6.055307558, 180.1322546,
262.1630059, 3.412857143, 181.6818246, 142.4036892, 122.3827137,
99.50427931, 60.49033956, 2.976064883, 42.91299583, 39.11274955,
32.67582669), .Dim = c(6L, 5L), .Dimnames = list(c("Artemisia_californica",
"Eschscholzia_californica", "Mimulus_aurantiacus", "Sisyrinchium_bellum",
"Sidalcea_malviflora", "Stipa_pulchra"), c("Growth_Rate", "Area",
"AreaVar", "SLA", "SLAVar")))
> dput(VegComm)
structure(list(Avena_fatua = c(0, 0.5, 0.333333333, 0.333333333,
1.916666667, 0.333333333, 2.25, 2.5, 2.25, 4.75, 4.75, 2.5, 1.583333333,
0, 2.25), Bromus_diandrus = c(1.25, 0, 4.083333333, 1.25, 0,
3, 4, 0, 0, 0, 1.75, 0, 1.25, 1.25, 2.083333333), Bromus_hordeaceus = c(0,
0.333333333, 0, 3.333333333, 8.833333333, 0, 0, 0, 1.5, 1.75,
0.666666667, 4, 0, 6.666666667, 0.333333333), Festuca_myuros = c(20.83333333,
14.16666667, 27.5, 10.41666667, 10.91666667, 6.25, 6.5, 5.083333333,
2.5, 7, 11.83333333, 21.66666667, 10.66666667, 9.916666667, 10.41666667
), Festuca_perennis = c(7.416666667, 2.25, 3.333333333, 15.83333333,
6.666666667, 2.25, 1.25, 1.25, 1.75, 2.083333333, 4.916666667,
4.666666667, 4.25, 8.25, 4.416666667), Carduus_pycnocephalus = c(0.5,
0, 6.083333333, 5.833333333, 0, 16, 13.75, 0.833333333, 0, 4.666666667,
0, 0.5, 5.75, 0, 1.25), Cirsium_vulgare = c(0, 0, 0, 0, 0.333333333,
0, 0, 0, 2.5, 0, 0, 0, 0, 0, 0), Erodium_cicutarium = c(0, 0,
0, 0, 0, 0, 4.166666667, 5.916666667, 0, 0, 0, 0, 0, 0, 0), Geranium_dissectum = c(21.25,
25, 15.83333333, 25.83333333, 15, 11.41666667, 10.5, 20.83333333,
22.91666667, 18.08333333, 15, 25.41666667, 12.5, 33.33333333,
23.33333333), Helminthotheca_echioides = c(0.333333333, 0, 1.75,
0, 1.25, 0.333333333, 0, 0, 0, 0, 2.833333333, 0, 0, 0, 0), Lactuca_serriola = c(0,
1.916666667, 2.416666667, 1.583333333, 1.75, 0, 0, 0, 0, 0, 1.25,
1.25, 1.5, 0, 0), Medicago_polymorpha = c(6.916666667, 30.41666667,
3.833333333, 10.75, 0, 3.833333333, 6.666666667, 16.66666667,
19.16666667, 4.25, 39.16666667, 7.083333333, 30, 5.833333333,
4.583333333), Oxalis_pes.caprae = c(0, 0, 0, 0, 0, 0, 0, 0, 2.916666667,
0, 0, 0, 0, 0, 0), Raphanus_sativus = c(4.916666667, 3.666666667,
6.666666667, 5.833333333, 3.333333333, 0.833333333, 4.5, 7.583333333,
18.33333333, 13.75, 0.666666667, 14.58333333, 0.333333333, 5.833333333,
5.083333333), Senecio_vulgaris = c(0, 0.833333333, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), Sonchus_oleraceus = c(0, 0.833333333,
5.916666667, 1.25, 10.83333333, 1.166666667, 0, 1.333333333,
0, 0, 3.833333333, 0.833333333, 0.333333333, 2.083333333, 0),
Vicia_sativa = c(0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0,
0, 13.33333333), Artemisia_californica = c(4.583333333, 0,
1.25, 0, 0, 0, 1.583333333, 0, 2.916666667, 0, 0, 1.25, 3.833333333,
0, 12.66666667), Baccharis_pilularis = c(18.33333333, 17.91666667,
2.083333333, 2.083333333, 3.333333333, 12, 3.833333333, 4.5,
6.666666667, 0, 4.166666667, 1.25, 0, 1.25, 8.333333333),
Ericameria_ericoides = c(1.25, 0, 0, 0, 0.5, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), Mimulus_aurantiacus = c(0.833333333, 0,
2.5, 0, 0, 0.166666667, 4.166666667, 0, 1.25, 0, 0, 0, 0,
0, 0), Bromus_carinatus = c(0.5, 2.083333333, 5.416666667,
0, 4.666666667, 3.333333333, 4.166666667, 0.333333333, 5.5,
0, 0.833333333, 3.333333333, 2.083333333, 2.5, 0), Elymus_triticoides = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
Hordeum_brachyantherum = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), Stipa_pulchra = c(0, 0, 1.25,
0, 0.5, 0, 1.25, 1.75, 4.583333333, 0, 0, 1.25, 4.583333333,
0, 0), Achillea_millefolium = c(7.5, 3.333333333, 5, 3.416666667,
9.166666667, 49.16666667, 22.91666667, 25.41666667, 8.75,
34.33333333, 14.16666667, 4.166666667, 10, 3.75, 12), Eschscholzia_californica = c(1.25,
0, 0, 2.916666667, 0, 0, 1.25, 0, 0, 0, 0.666666667, 1, 0,
1.583333333, 0), Lupinus_variicolor = c(0, 0, 0, 0, 0, 0,
0, 0, 2.5, 0, 0, 0, 0, 0, 0), Echium_candicans = c(0, 0,
0, 0, 0.666666667, 0, 0, 0, 0, 0, 1.25, 0, 0, 0, 0)), .Names = c("Avena_fatua",
"Bromus_diandrus", "Bromus_hordeaceus", "Festuca_myuros", "Festuca_perennis",
"Carduus_pycnocephalus", "Cirsium_vulgare", "Erodium_cicutarium",
"Geranium_dissectum", "Helminthotheca_echioides", "Lactuca_serriola",
"Medicago_polymorpha", "Oxalis_pes.caprae", "Raphanus_sativus",
"Senecio_vulgaris", "Sonchus_oleraceus", "Vicia_sativa", "Artemisia_californica",
"Baccharis_pilularis", "Ericameria_ericoides", "Mimulus_aurantiacus",
"Bromus_carinatus", "Elymus_triticoides", "Hordeum_brachyantherum",
"Stipa_pulchra", "Achillea_millefolium", "Eschscholzia_californica",
"Lupinus_variicolor", "Echium_candicans"), row.names = c("PC1",
"PC2", "PC3", "PC4", "PC5", "PS1", "PS2", "PS3", "PS4", "PS5",
"PW1", "PW2", "PW3", "PW4", "PW5"), class = "data.frame")
> dput(nativetree)
structure(list(edge = structure(c(12L, 13L, 14L, 15L, 16L, 16L,
15L, 14L, 17L, 18L, 18L, 19L, 19L, 17L, 13L, 12L, 20L, 21L, 21L,
20L, 13L, 14L, 15L, 16L, 1L, 2L, 3L, 17L, 18L, 4L, 19L, 5L, 6L,
7L, 8L, 20L, 21L, 9L, 10L, 11L), .Dim = c(20L, 2L)), edge.length = c(7.629639,
22, 20.333344, 93.62796, 11.038696, 11.038696, 104.666656, 28.5,
62.899994, 33.600006, 16.800003, 16.800003, 16.800003, 96.5,
147, 41.985199, 51.760712, 60.883728, 60.883728, 112.64444),
Nnode = 10L, node.label = c("", "eudicots", "", "euasterids",
"", "eurosids", "mesopapilionoideaeclade", "lupinus", "",
""), tip.label = c("achillea_millefolium", "ericameria_ericoides",
"mimulus_aurantiacus", "hosackia_gracilis", "lupinus_nanus",
"lupinus_variicolor", "sidalcea_malviflora", "eschscholzia_californica",
"bromus_carinatus", "nassella_pulchra", "sisyrinchium_bellum"
), root.edge = 291.370361), .Names = c("edge", "edge.length",
"Nnode", "node.label", "tip.label", "root.edge"), class = "phylo", order = "cladewise")
答案 0 :(得分:0)
问题在于STraits
和nativetree
之间的物种名称不匹配。
intersect(row.names(STraits), nativetree$tip.label)
# character(0)
R
区分大小写,因此树中的小写名称将不会被识别为与数据矩阵中的大写名称相同。同样,物种的名称也不同。
名称正确匹配后,需要按上述顺序对特征进行排序:
traits <- STraits[nativetree$tip.label,]
以及根据新的traits
表每列计算的系统发生信号:
library(picante)
res = data.frame()
for(i in 1:ncol(traits)){
res[i, ] = phylosignal(x = traits[, i], phy = nativetree, reps = 999)
}
请注意,我使用的是dput
所提供的数据,而不是脚本暗含的修改。此外,请检查?phylosignal
的语法。
可以使用phytools
软件包在系统发育图上绘制连续字符,如here所示。