我有一个枚举,我想从中随机选择一个值,但不是真正随机的。我希望到目前为止,某些值不太可能被选中。这是我到目前为止所拥有的......
private enum Type{
TYPE_A, TYPE_B, TYPE_C, TYPE_D, TYPE_E;
private static final List<Type> VALUES =
Collections.unmodifiableList(Arrays.asList(values()));
private static final int SIZE = VALUES.size();
private static final Random RANDOM = new Random();
public static Type randomType() {
return VALUES.get(RANDOM.nextInt(SIZE));
}
}
是否有一种有效的方法为每个值分配概率?
从here
找到的代码答案 0 :(得分:6)
有几种方法可以做到,其中一种方法与您的方法类似
private enum Type{
TYPE_A(10 /*10 - weight of this type*/), TYPE_B(1), TYPE_C(5), TYPE_D(20), TYPE_E(7);
private int weight;
private Type(int weight) {
this.weight = weight;
}
private int getWeight() {
return weight;
}
private static final List<Type> VALUES =
Collections.unmodifiableList(Arrays.asList(values()));
private int summWeigts() {
int summ = 0;
foreach(Type value: VALUES)
summ += value.getWeight();
return summ;
}
private static final int SIZE = summWeigts();
private static final Random RANDOM = new Random();
public static Type randomType() {
int randomNum = RANDOM.nextInt(SIZE);
int currentWeightSumm = 0;
for(Type currentValue: VALUES) {
if (randomNum > currentWeightSumm &&
randomNum <= (currentWeightSumm + currentValue.getWeight()) {
break;
}
currentWeightSumm += currentValue.getWeight();
}
return currentValue.get();
}
}
答案 1 :(得分:0)
答案 2 :(得分:0)
假设您有一个有限数量的值,您可以为每个值设置一个单独的数组(float []权重;)。这些值介于0和1之间。当您选择随机值时,还会在其间生成另一个随机数,并且仅在第二个生成的数字低于该值的权重时选择该值。
答案 3 :(得分:0)
您可以通过提供自定义构造函数来创建包含关联数据的枚举,并使用构造函数为概率分配权重,然后
public enum WeightedEnum {
ONE(1), TWO(2), THREE(3);
private WeightedEnum(int weight) {
this.weight = weight;
}
public int getWeight() {
return this.weight;
}
private final int weight;
public static WeightedEnum randomType() {
// select one based on random value and relative weight
}
}
答案 4 :(得分:0)
import java.util.*;
enum R {
a(.1),b(.2),c(.3),d(.4);
R(final double p) {
this.p=p;
}
private static void init() {
sums=new double[values().length+1];
sums[0]=0;
for(int i=0;i<values().length;i++)
sums[i+1]=values()[i].p+sums[i];
once=true;
}
static R random() {
if (!once) init();
final double x=Math.random();
for(int i=0;i<values().length;i++)
if (sums[i]<=x&&x<sums[i+1]) return values()[i];
throw new RuntimeException("should not happen!");
}
static boolean check() {
double sum=0;
for(R r:R.values())
sum+=r.p;
return(Math.abs(sum-1)<epsilon);
}
final double p;
static final double epsilon=.000001;
static double[] sums;
static boolean once=false;
}
public class Main{
public static void main(String[] args) {
if (!R.check()) throw new RuntimeException("values should sum to one!");
final Map<R,Integer> bins=new EnumMap<R,Integer>(R.class);
for(R r:R.values())
bins.put(r,0);
final int n=1000000;
for(int i=0;i<n;i++) {
final R r=R.random();
bins.put(r,bins.get(r)+1);
}
for(R r:R.values())
System.out.println(r+" "+r.p+" "+bins.get(r)/(double)n);
}
}
答案 5 :(得分:0)
这是另一种允许在运行时指定分发的替代方法。
包括Alexey Sviridov的建议。当有很多选项时,方法random()也可以包含来自Ted Dunning的建议。
private enum Option {
OPTION_1, OPTION_2, OPTION_3, OPTION_4;
static private final Integer OPTION_COUNT = EnumSet.allOf(Option.class).size();
static private final EnumMap<Option, Integer> buckets = new EnumMap<Option, Integer>(Option.class);
static private final Random random = new Random();
static private Integer total = 0;
static void setDistribution(Short[] distribution) {
if (distribution.length < OPTION_COUNT) {
throw new ArrayIndexOutOfBoundsException("distribution too short");
}
total = 0;
Short dist;
for (Option option : EnumSet.allOf(Option.class)) {
dist = distribution[option.ordinal()];
total += (dist < 0) ? 0 : dist;
buckets.put(option, total);
}
}
static Option random() {
Integer rnd = random.nextInt(total);
for (Option option : EnumSet.allOf(Option.class)) {
if (buckets.get(option) > rnd) {
return option;
}
}
throw new IndexOutOfBoundsException();
}
}
答案 6 :(得分:0)
您可以使用EnumeratedDistribution库中的Apache Commons Math。
EnumeratedDistribution<Type> distribution = new EnumeratedDistribution<>(
RandomGeneratorFactory.createRandomGenerator(new Random()),
List.of(
new Pair<>(Type.TYPE_A, 0.2), // get TYPE_A with probability 0.2
new Pair<>(Type.TYPE_B, 0.5), // get TYPE_B with probability 0.5
new Pair<>(Type.TYPE_C, 0.3) // get TYPE_C with probability 0.3
)
);
Type mySample = distribution.sample();