在python中高效地计算n体引力

时间:2018-09-28 20:14:34

标签: python numpy simulation physics

我正在尝试计算3空间中n体问题的重力加速度(我正在使用辛欧拉)。

我每个时间步都有位置和速度矢量,并且正在使用下面的(工作)代码来计算加速度并更新速度和位置。请注意,加速度是3空间中的矢量,而不仅仅是幅度。

我想知道是否有一种更有效的方法可以使用numpy进行计算以避免循环。

def accelerations(positions, masses):
    '''Params:
    - positions: numpy array of size (n,3)
    - masses: numpy array of size (n,)
    Returns:
    - accelerations: numpy of size (n,3), the acceleration vectors in 3-space
    '''
    n_bodies = len(masses)
    accelerations = numpy.zeros([n_bodies,3]) # n_bodies * (x,y,z)

    # vectors from mass(i) to mass(j)
    D = numpy.zeros([n_bodies,n_bodies,3]) # n_bodies * n_bodies * (x,y,z)
    for i, j in itertools.product(range(n_bodies), range(n_bodies)):
        D[i][j] = positions[j]-positions[i]

    # Acceleration due to gravitational force between each pair of bodies
    A = numpy.zeros((n_bodies, n_bodies,3))
    for i, j in itertools.product(range(n_bodies), range(n_bodies)):
        if numpy.linalg.norm(D[i][j]) > epsilon:
            A[i][j] = gravitational_constant * masses[j] * D[i][j] \
            / numpy.linalg.norm(D[i][j])**3

    # Calculate net acceleration of each body (vectors in 3-space)
    accelerations = numpy.sum(A, axis=1) # sum of accel vectors for each body of shape (n_bodies,3)

    return accelerations

3 个答案:

答案 0 :(得分:3)

跟进我对您的原始帖子的评论:

from numpy.linalg import norm

def accelerations(positions, masses):
    '''Params:
    - positions: numpy array of size (n,3)
    - masses: numpy array of size (n,)
    '''
    mass_matrix = masses.reshape((1, -1, 1))*masses.reshape((-1, 1, 1))
    disps = positions.reshape((1, -1, 3)) - positions.reshape((-1, 1, 3)) # displacements
    dists = norm(disps, axis=2)
    dists[dists == 0] = 1 # Avoid divide by zero warnings
    forces = G*disps*mass_matrix/np.expand_dims(dists, 2)**3
    return forces.sum(axis=1)/masses.reshape(-1, 1)

答案 1 :(得分:3)

这是使用blas的优化版本。 blas具有用于对称或Hermitian矩阵上的线性代数的特殊例程。这些使用专用的打包存储,仅保留上三角或下三角,并保留(冗余)镜像条目。这样,blas不仅可以节省一半的存储空间,还可以节省一半的拖鞋。

我已经发表了很多评论以使其易于阅读。

import numpy as np
import itertools
from scipy.linalg.blas import zhpr, dspr2, zhpmv

def acc_vect(pos, mas):
    n = mas.size
    d2 = pos@(-2*pos.T)
    diag = -0.5 * np.einsum('ii->i', d2)
    d2 += diag + diag[:, None]
    np.einsum('ii->i', d2)[...] = 1
    return np.nansum((pos[:, None, :] - pos) * (mas[:, None] * d2**-1.5)[..., None], axis=0)

def acc_blas(pos, mas):
    n = mas.size
    # trick: use complex Hermitian to get the packed anti-symmetric
    # outer difference in the imaginary part of the zhpr answer
    # don't want to sum over dimensions yet, therefore must do them one-by-one
    trck = np.zeros((3, n * (n + 1) // 2), complex)
    for a, p in zip(trck, pos.T - 1j):
        zhpr(n, -2, p, a, 1, 0, 0, 1)
        # does  a  ->  a + alpha x x^H
        # parameters: n             --  matrix dimension
        #             alpha         --  real scalar
        #             x             --  complex vector
        #             ap            --  packed Hermitian n x n matrix a
        #                               i.e. an n(n+1)/2 vector
        #             incx          --  x stride
        #             offx          --  x offset
        #             lower         --  is storage of ap lower or upper
        #             overwrite_ap  --  whether to change a inplace
    # as a by-product we get pos pos^T:
    ppT = trck.real.sum(0) + 6
    # now compute matrix of squared distances ...
    # ... using (A-B)^2 = A^2 + B^2 - 2AB
    # ... that and the outer sum X (+) X.T equals X ones^T + ones X^T
    dspr2(n, -0.5, ppT[np.r_[0, 2:n+1].cumsum()], np.ones((n,)), ppT,
          1, 0, 1, 0, 0, 1)
    # does  a  ->  a + alpha x y^T + alpha y x^T    in packed symmetric storage
    # scale anti-symmetric differences by distance^-3
    np.divide(trck.imag, ppT*np.sqrt(ppT), where=ppT.astype(bool),
              out=trck.imag)
    # it remains to scale by mass and sum
    # this can be done by matrix multiplication with the vector of masses ...
    # ... unfortunately because we need anti-symmetry we need to work
    # with Hermitian storage, i.e. complex numbers, even though the actual
    # computation is only real:
    out = np.zeros((3, n), complex)
    for a, o in zip(trck, out):
        zhpmv(n, 0.5, a, mas*-1j, 1, 0, 0, o, 1, 0, 0, 1)
        # multiplies packed Hermitian matrix by vector
    return out.real.T

def accelerations(positions, masses, epsilon=1e-6, gravitational_constant=1.0):
    '''Params:
    - positions: numpy array of size (n,3)
    - masses: numpy array of size (n,)
    '''
    n_bodies = len(masses)
    accelerations = np.zeros([n_bodies,3]) # n_bodies * (x,y,z)

    # vectors from mass(i) to mass(j)
    D = np.zeros([n_bodies,n_bodies,3]) # n_bodies * n_bodies * (x,y,z)
    for i, j in itertools.product(range(n_bodies), range(n_bodies)):
        D[i][j] = positions[j]-positions[i]

    # Acceleration due to gravitational force between each pair of bodies
    A = np.zeros((n_bodies, n_bodies,3))
    for i, j in itertools.product(range(n_bodies), range(n_bodies)):
        if np.linalg.norm(D[i][j]) > epsilon:
            A[i][j] = gravitational_constant * masses[j] * D[i][j] \
            / np.linalg.norm(D[i][j])**3

    # Calculate net accleration of each body
    accelerations = np.sum(A, axis=1) # sum of accel vectors for each body

    return accelerations

from numpy.linalg import norm

def acc_pm(positions, masses, G=1):
    '''Params:
    - positions: numpy array of size (n,3)
    - masses: numpy array of size (n,)
    '''
    mass_matrix = masses.reshape((1, -1, 1))*masses.reshape((-1, 1, 1))
    disps = positions.reshape((1, -1, 3)) - positions.reshape((-1, 1, 3)) # displacements
    dists = norm(disps, axis=2)
    dists[dists == 0] = 1 # Avoid divide by zero warnings
    forces = G*disps*mass_matrix/np.expand_dims(dists, 2)**3
    return forces.sum(axis=1)/masses.reshape(-1, 1)

n = 500
pos = np.random.random((n, 3))
mas = np.random.random((n,))

from timeit import timeit

print(f"loops:      {timeit('accelerations(pos, mas)', globals=globals(), number=1)*1000:10.3f} ms")
print(f"pmende:     {timeit('acc_pm(pos, mas)', globals=globals(), number=10)*100:10.3f} ms")
print(f"vectorized: {timeit('acc_vect(pos, mas)', globals=globals(), number=10)*100:10.3f} ms")
print(f"blas:       {timeit('acc_blas(pos, mas)', globals=globals(), number=10)*100:10.3f} ms")

A = accelerations(pos, mas)
AV = acc_vect(pos, mas)
AB = acc_blas(pos, mas)
AP = acc_pm(pos, mas)

assert np.allclose(A, AV) and np.allclose(AB, AV) and np.allclose(AP, AV)

样品运行;与OP相比,我是纯粹的numpy向量化和@P Mende的。

loops:        3213.130 ms
pmende:         41.480 ms
vectorized:     43.860 ms
blas:            7.726 ms

我们可以看到

1)P Mende在向量化方面略胜于我

2)blas〜5倍;请注意,我的blas不是很好。我怀疑优化的blas可能会使您变得更好(不过,在更好的blas上,numpy也会运行得更快)

3)任何答案都比循环快得多

答案 2 :(得分:2)

要考虑的一些事情:

您只需要一半的距离;一旦计算出D[i][j],就与-D[j][i]一样。

您可以进行df2 = df.apply(lambda x:gravitational_constant/x**3)

您可以生成一个数据框,该数据框记录每对物体的质量乘积。您只需执行一次,然后每次调用它就可以将其传递给accelearations

然后df.product(df2).product(mass_products).sum().div(masses)为您提供加速度。