在python中使用Monte Carlo方法

时间:2018-09-24 17:58:19

标签: python matplotlib numerical-methods

我正在处理下图中写的问题的第一个版本。我使用rand命令生成了一个随机点,并测试了该点是否在圆内。我的代码是否接受许多Monte Carlo函数作为输入值?我相信我选择了N,其点数应足够小,以免出现内存不足的情况。另外,当我运行此代码时,它运行时没有任何错误,但该图未显示。在我可能出错的地方寻求帮助。

enter image description here

import numpy as np
import matplotlib.pyplot as plt
from random import random

xinside = []
yinside = []
xoutside = []
youtside = []

insidecircle = 0
totalpoints = 10**3

for _ in range(totalpoints):
    x = random()
    y = random()
    if x**2+y**2 <= 1:
        insidecircle += 1
        xinside.append(x)
        yinside.append(y)
    else:
        xoutside.append(x)
        youtside.append(y)

fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.scatter(xinside, yinside, color='g', marker='s')
ax.scatter(xoutside, youtside, color='r', marker='s')
fig.show()

1 个答案:

答案 0 :(得分:3)

未显示的图形是神秘的,也许尝试plt.show()。或者,您可以使用savefig保存绘图。这是代码第一部分的工作功能(只需修改问题中已发布的代码)以及所需的输出图。

import numpy as np
import matplotlib.pyplot as plt
from random import random

def monte_carlo(n_points):
    xin, yin, xout, yout = [[] for _ in range(4)] # Defining all 4 lists together
    insidecircle = 0

    for _ in range(n_points):
        x = random()
        y = random()
        if x**2+y**2 <= 1:
            insidecircle += 1
            xin.append(x)
            yin.append(y)
        else:
            xout.append(x)
            yout.append(y)

    print ("The estimated value of Pi for N = %d is %.4f" %(n_points, 4*insidecircle/n_points))

    fig, ax = plt.subplots()
    ax.set_aspect('equal')
    ax.scatter(xin, yin, color='g', marker='o', s=4)
    ax.scatter(xout, yout, color='r', marker='o', s=4)
    plt.savefig('monte_carlo.png')

n_points = 10**4
monte_carlo(n_points)

> The estimated value of Pi for N = 10000 is 3.1380

enter image description here

向量化方法,如果您在函数中排除了print语句,则可以将其称为一线式。我把时间分析留给你做功课

import numpy as np
import matplotlib.pyplot as plt

def monte_carlo(n_points, x, y):
    pi_vec = 4*(x**2 + y**2 <= 1).sum()/n_points
    print ("The estimated value of Pi for N = %d is %.4f" %(n_points, pi_vec))

# Generate points
n_points = 10**4
x = np.random.random(n_points)
y = np.random.random(n_points)
# x = [random() for _ in range(n_points)] # alternative way to define x
# y = [random() for _ in range(n_points)] # alternative way to define y

# Call function
monte_carlo(n_points, x, y)

> The estimated value of Pi for N = 10000 is 3.1284

或者,您可以通过仅使用x和y点的单个数组来摆脱两个变量xy,如下所示:

pts = np.random.uniform(0, 1, 2*n_points).reshape((n_points, 2))
monte_carlo(n_points, pts) # Function will be def monte_carlo(n_points, pts):

在函数中使用

pi_vec = 4*(pts[:,0]**2 + pts[:,1]**2 <= 1).sum()/n_points