我是tensorflow的新手,并且正在执行udacity程序。我被要求在notMNIST数据集上构建图像分类器。
我附上了代码和错误,请尽一切可能帮助我。谢谢。
features_count = 784
labels_count = 10
features = tf.placeholder(tf.float32)
labels = tf.placeholder(tf.float32)
weights = tf.Variable(tf.truncated_normal((features_count,
labels_count)))
biases = tf.Variable(tf.zeros(labels_count))
train_feed_dict = {features: train_features,labels: train_labels}
valid_feed_dict = {features: valid_features, labels: valid_labels}
test_feed_dict = {features: test_features, labels: test_labels}
# Linear function Wx+b
logits = tf.add(tf.matmul(features,weights), biases)
prediction = tf.nn.softmax(logits)
#Cross entropy
cross_entropy = -tf.reduce_sum(labels * tf.log(prediction),
reduction_indices = 1)
# Training loss
loss = tf.reduce_mean(cross_entropy)
# Initialize all the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
sess.run(loss, feed_dict = train_feed_dict)
sess.run(loss, feed_dict = valid_feed_dict)
sess.run(loss, feed_dict = test_feed_dict)
biases_data = sess.run(biases)
这是我得到的错误:
InvalidArgumentError: Incompatible shapes: [14250,10] vs. [15000,10]
[[Node: mul_7 = Mul[T=DT_FLOAT,
_device="/job:localhost/replica:0/task:0/device:CPU:0"] .
(_arg_Placeholder_16_0_1, Log_7)]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call
last)
<ipython-input-46-83a463c8a201> in <module>()
53 with tf.Session() as sess:
54 sess.run(init)
---> 55 sess.run(loss, feed_dict = train_feed_dict)
56 sess.run(loss, feed_dict = valid_feed_dict)
57 sess.run(loss, feed_dict = test_feed_dict)