我有3d点云数据作为.npy文件和.pts数据。
要将这些数据用于3d分类神经网络,我必须将这些数据更改为.h5文件。
因此,首先,我尝试使用python将.npy或.pts文件转换为.ply文件。
您能参考我的示例代码还是帮助我转换文件格式?
此外,我非常感谢将.ply转换为.h5格式的方法。
对不起,我的英语水平很差。
答案 0 :(得分:0)
更正/改进top answer
如果您有多个要转换为.h5的.npy文件,则将其所在目录的路径写入变量NPY_DIRECTORY
:
from os import listdir
from os.path import isfile, join
import os
import h5py
import numpy as np
NPY_FILES_DIRECTORY = ""
filenames = [f for f in listdir(NPY_FILES_DIRECTORY) if isfile(join(NPY_FILES_DIRECTORY, f))]
# reading or creating an array of points numpy style
def create_or_load_random_points_npy(filename, size, min, max):
if os.path.exists(filename):
arr = np.load(filename)
else:
arr = np.random.uniform(min, max, (size,3))
np.save(filename, arr)
return arr
# converting a numpy array (size,3) to a h5 file with two groups representng two way
# of serializing points
def convert_array_2_shades_of_grey(filename, arr):
file = h5py.File(filename + '.h5', 'w')
#only one dataset in a group
group = file.create_group("single_dataset")
group.attrs["desc"]=np.string_("random points in a single dataset")
dset=group.create_dataset("points", (len(arr), len(arr[0])), h5py.h5t.NATIVE_DOUBLE)
dset[...]=arr
#create a dataset for each coordinate
group = file.create_group("several_datasets")
group.attrs["desc"] = np.string_("random points in a several coordinates (one for each coord)")
dset = group.create_dataset("x", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 0]
dset = group.create_dataset("y", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 1]
dset = group.create_dataset("z", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
dset[...] = arr[:, 2]
# loads the h5 file, choose which way of storing you would like to deserialize
def load_random_points_h5(filename, single=True):
file = h5py.File(filename + '.h5', 'r')
if single:
group = file["single_dataset"]
print('reading -> ', group.attrs["desc"])
dset=group["points"]
arr = dset[...]
else:
group = file["several_datasets"]
print('reading -> ', group.attrs["desc"])
dset = group["x"]
arr = np.zeros((dset.size, 3))
arr[:, 0] = dset[...]
dset = group["y"]
arr[:, 1] = dset[...]
dset = group["z"]
arr[:, 2] = dset[...]
return arr
# And now we test !!!
for filename in filenames:
# create or load the npy file
arr = create_or_load_random_points_npy(filename, 10000, -100.0, 100.0)
# Well, well, what is in the box ?
print(arr)
# converting numpy array to h5
convert_array_2_shades_of_grey(filename, arr)
# loading single dataset style.
arr = load_random_points_h5(filename, True)
# Well, well, what is in the box ?
print(arr)
# loading several dataset style.
arr = load_random_points_h5(filename, False)
# Well, well, what is in the box ?
print(arr)