如何将.pts或.npy文件转换为.ply或.h5文件?

时间:2018-09-14 07:23:43

标签: python numpy hdf5 ply-file-format

我有3d点云数据作为.npy文件和.pts数据。

要将这些数据用于3d分类神经网络,我必须将这些数据更改为.h5文件。

因此,首先,我尝试使用python将.npy或.pts文件转换为.ply文件。

您能参考我的示例代码还是帮助我转换文件格式?

此外,我非常感谢将.ply转换为.h5格式的方法。

对不起,我的英语水平很差。

1 个答案:

答案 0 :(得分:0)

更正/改进top answer

如果您有多个要转换为.h5的.npy文件,则将其所在目录的路径写入变量NPY_DIRECTORY


from os import listdir
from os.path import isfile, join
import os
import h5py
import numpy as np
NPY_FILES_DIRECTORY = ""
filenames = [f for f in listdir(NPY_FILES_DIRECTORY) if isfile(join(NPY_FILES_DIRECTORY, f))]



# reading or creating an array of points numpy style
def create_or_load_random_points_npy(filename, size, min, max):
    if os.path.exists(filename):
        arr = np.load(filename)
    else:
        arr = np.random.uniform(min, max, (size,3))
        np.save(filename, arr)
    return arr


# converting a numpy array (size,3) to a h5 file with two groups representng two way
# of serializing points
def convert_array_2_shades_of_grey(filename, arr):
    file = h5py.File(filename + '.h5', 'w')
    #only one dataset in a group
    group = file.create_group("single_dataset")
    group.attrs["desc"]=np.string_("random points in a single dataset")
    dset=group.create_dataset("points", (len(arr), len(arr[0])), h5py.h5t.NATIVE_DOUBLE)
    dset[...]=arr
    #create a dataset for each coordinate
    group = file.create_group("several_datasets")
    group.attrs["desc"] = np.string_("random points in a several coordinates (one for each coord)")
    dset = group.create_dataset("x", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
    dset[...] = arr[:, 0]
    dset = group.create_dataset("y", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
    dset[...] = arr[:, 1]
    dset = group.create_dataset("z", (len(arr),), h5py.h5t.NATIVE_DOUBLE)
    dset[...] = arr[:, 2]

# loads the h5 file, choose which way of storing you would like to deserialize
def load_random_points_h5(filename, single=True):
    file = h5py.File(filename + '.h5', 'r')
    if single:
        group = file["single_dataset"]
        print('reading -> ', group.attrs["desc"])
        dset=group["points"]
        arr = dset[...]
    else:
        group = file["several_datasets"]
        print('reading -> ', group.attrs["desc"])
        dset = group["x"]
        arr = np.zeros((dset.size, 3))
        arr[:, 0] = dset[...]
        dset = group["y"]
        arr[:, 1] = dset[...]
        dset = group["z"]
        arr[:, 2] = dset[...]
    return arr

# And now we test !!!
for filename in filenames:
    # create or load the npy file
    arr = create_or_load_random_points_npy(filename, 10000, -100.0, 100.0)
    # Well, well, what is in the box ?
    print(arr)

    # converting numpy array to h5
    convert_array_2_shades_of_grey(filename, arr)

    # loading single dataset style.
    arr = load_random_points_h5(filename, True)
    # Well, well, what is in the box ?
    print(arr)
    # loading several dataset style.
    arr = load_random_points_h5(filename, False)
    # Well, well, what is in the box ?
    print(arr)