将常规的2d矩形坐标转换为空中飞人

时间:2018-09-13 13:37:07

标签: javascript math geometry

我开始构建一个使用svg资产的小部件,该资产是一个足球场。到目前为止,我正在使用常规的2d矩形,效果很好。但是我想用这一资产来代替该资产:

enter image description here

我开始制作关于如何计算这种svg中球位置的原型,并且效果不佳。我想我需要的是从常规2D矩形模型到某种其他可以解释飞人图形的转换。

也许有人可以帮助您了解其工作方式。可以说我有跟随{x: 0.2, y: 0.2}的坐标,这意味着我必须将球放在球场宽度的20%和球场高度的20%内。在此示例中我该怎么办?

编辑#1

我读了MBo发布的答案,并努力将delphi代码重写为JavaScript。我一点都不了解delphi,但我认为它运行良好,但是在尝试代码后我遇到了一些问题:

  1. 空中飞人被扭转(底部更短的水平线),我尝试修复它,但没有成功,经过几次尝试,我都想按此方法进行操作,但是0.2, 0.2坐标出现在底部而不是靠近顶部。

  2. 我不确定总体上计算是否正确,中心坐标似乎偏向底部(至少是我的视觉印象)

  3. 我尝试通过玩YShift = Hg / 4;来解决空中飞人的反向问题,但这会导致各种问题。想知道这是如何工作的

  4. 据我了解,该脚本的工作方式是您指定更长的水平线Wd和高度Hg,这会为您带来飞人,对吗?

编辑#2

我更新了演示代码段,它似乎以某种方式起作用,当前我唯一遇到的问题是如果我指定

Wd = 600; // width of source
Hg = 200; // height of source

实际的空中飞人较小(宽度和高度较小),

也以某种奇怪的方式操纵了这一行:

YShift = Hg / 4;

更改空中飞人的实际高度。

这当时很难实施,就像给我指定大小的svg法院一样,我需要能够为函数提供实际的大小,这样坐标计算才是准确的。

让我们说我会在我知道4个角的情况下获得法庭的审判,因此我需要能够计算坐标。不幸的是,这是我的演示摘录中的实现。

有人可以帮助更改代码或提供更好的实现吗?

编辑#3-分辨率

这是最终的实现:

var math = {
	inv: function (M){
		if(M.length !== M[0].length){return;}

		var i=0, ii=0, j=0, dim=M.length, e=0, t=0;
		var I = [], C = [];
		for(i=0; i<dim; i+=1){
			I[I.length]=[];
			C[C.length]=[];
			for(j=0; j<dim; j+=1){

				if(i==j){ I[i][j] = 1; }
				else{ I[i][j] = 0; }

				C[i][j] = M[i][j];
			}
		}

		for(i=0; i<dim; i+=1){
			e = C[i][i];

			if(e==0){
				for(ii=i+1; ii<dim; ii+=1){
					if(C[ii][i] != 0){
						for(j=0; j<dim; j++){
							e = C[i][j];
							C[i][j] = C[ii][j];
							C[ii][j] = e;
							e = I[i][j];
							I[i][j] = I[ii][j];
							I[ii][j] = e;
						}
						break;
					}
				}
				e = C[i][i];
				if(e==0){return}
			}

			for(j=0; j<dim; j++){
				C[i][j] = C[i][j]/e;
				I[i][j] = I[i][j]/e;
			}

			for(ii=0; ii<dim; ii++){
				if(ii==i){continue;}

				e = C[ii][i];

				for(j=0; j<dim; j++){
					C[ii][j] -= e*C[i][j];
					I[ii][j] -= e*I[i][j];
				}
			}
		}

		return I;
	},
	multiply: function(m1, m2) {
		var temp = [];
		for(var p = 0; p < m2.length; p++) {
			temp[p] = [m2[p]];
		}
		m2 = temp;

		var result = [];
		for (var i = 0; i < m1.length; i++) {
			result[i] = [];
			for (var j = 0; j < m2[0].length; j++) {
				var sum = 0;
				for (var k = 0; k < m1[0].length; k++) {
					sum += m1[i][k] * m2[k][j];
				}
				result[i][j] = sum;
			}
		}
		return result;
	}
};

// standard soccer court dimensions
var soccerCourtLength = 105; // [m]
var soccerCourtWidth  =  68; // [m]

// soccer court corners in clockwise order with center = (0,0)
var courtCorners = [
    [-soccerCourtLength/2., soccerCourtWidth/2.], 
    [ soccerCourtLength/2., soccerCourtWidth/2.], 
    [ soccerCourtLength/2.,-soccerCourtWidth/2.], 
    [-soccerCourtLength/2.,-soccerCourtWidth/2.]];

// screen corners in clockwise order (unit: pixel)
var screenCorners = [
    [50., 150.], 
    [450., 150.],
    [350., 50.],
    [ 150., 50.]
];

// compute projective mapping M from court to screen
//      / a b c \
// M = (  d e f  )
//      \ g h 1 /

// set up system of linear equations A X = B for X = [a,b,c,d,e,f,g,h]
var A = [];
var B = [];
var i;
for (i=0; i<4; ++i)
{
  var cc = courtCorners[i];
  var sc = screenCorners[i];
  A.push([cc[0], cc[1], 1., 0., 0., 0., -sc[0]*cc[0], -sc[0]*cc[1]]);
  A.push([0., 0., 0., cc[0], cc[1], 1., -sc[1]*cc[0], -sc[1]*cc[1]]);
  B.push(sc[0]);
  B.push(sc[1]);
}

var AInv = math.inv(A);
var X = math.multiply(AInv, B); // [a,b,c,d,e,f,g,h]

// generate matrix M of projective mapping from computed values
X.push(1);
M = [];
for (i=0; i<3; ++i)
    M.push([X[3*i], X[3*i+1], X[3*i+2]]);

// given court point (array [x,y] of court coordinates): compute corresponding screen point
function calcScreenCoords(pSoccer) {
  var ch = [pSoccer[0],pSoccer[1],1]; // homogenous coordinates
  var sh = math.multiply(M, ch);      // projective mapping to screen
  return [sh[0]/sh[2], sh[1]/sh[2]];  // dehomogenize
}

function courtPercToCoords(xPerc, yPerc) {
    return [(xPerc-0.5)*soccerCourtLength, (yPerc-0.5)*soccerCourtWidth];
}

var pScreen = calcScreenCoords(courtPercToCoords(0.2,0.2));
var hScreen = calcScreenCoords(courtPercToCoords(0.5,0.5));

// Custom code
document.querySelector('.trapezoid').setAttribute('d', `
	M ${screenCorners[0][0]} ${screenCorners[0][1]}
	L ${screenCorners[1][0]} ${screenCorners[1][1]}
	L ${screenCorners[2][0]} ${screenCorners[2][1]}
	L ${screenCorners[3][0]} ${screenCorners[3][1]}
	Z
`);

document.querySelector('.point').setAttribute('cx', pScreen[0]);
document.querySelector('.point').setAttribute('cy', pScreen[1]);
document.querySelector('.half').setAttribute('cx', hScreen[0]);
document.querySelector('.half').setAttribute('cy', hScreen[1]);

document.querySelector('.map-pointer').setAttribute('style', 'left:' + (pScreen[0] - 15) + 'px;top:' + (pScreen[1] - 25) + 'px;');

document.querySelector('.helper.NW-SE').setAttribute('d', `M ${screenCorners[3][0]} ${screenCorners[3][1]} L ${screenCorners[1][0]} ${screenCorners[1][1]}`);
document.querySelector('.helper.SW-NE').setAttribute('d', `M ${screenCorners[0][0]} ${screenCorners[0][1]} L ${screenCorners[2][0]} ${screenCorners[2][1]}`);
body {
	margin:0;
}

.container {
	width:500px;
	height:200px;
	position:relative;
	border:solid 1px #000;
}

.view {
	background:#ccc;
	width:100%;
	height:100%;
}

.trapezoid {
	fill:none;
	stroke:#000;
}

.point {
	stroke:none;
	fill:red;
}

.half {
	stroke:none;
	fill:blue;
}

.helper {
	fill:none;
	stroke:#000;
}

.map-pointer {
	background-image:url('');
	display:block;
	width:32px;
	height:32px;
	background-repeat:no-repeat;
	background-size:32px 32px;
	position:absolute;
	opacity:.3;
}
<div class="container">
	<svg class="view">
		<path class="trapezoid"></path>
		<circle class="point" r="3"></circle>
		<circle class="half" r="3"></circle>
		<path class="helper NW-SE"></path>
		<path class="helper SW-NE"></path>
	</svg>
	<span class="map-pointer"></span>
</div>

2 个答案:

答案 0 :(得分:1)

您正在寻找从法院平面的(x,y)到屏幕平面的(u,v)的投影映射。投影映射如下所示:

  1. 将1附加到法院坐标上以获得同质坐标(x,y,1)
  2. 将这些均匀坐标与左侧适当的3x3矩阵M相乘,以获得屏幕像素的均匀坐标(u',v',l)
  3. 使坐标去均质以获取实际的屏幕坐标(u,v) = (u'/l, v'/l)

例如,可以通过求解相应的方程来计算适当的矩阵M。角落。选择法院中心使其与原点和沿较长边的x轴重合,并从您的图像中测量角点坐标,对于标准105x68法院,我们得到以下相应坐标:

(-52.5, 34) -> (174, 57)
( 52.5, 34) -> (566, 57)
( 52.5,-34) -> (690,214)
(-52.5,-34) -> ( 50,214)

设置矩阵投影映射的方程式

     / a b c \
M = (  d e f  )
     \ g h 1 /

导致具有8个方程和8个未知数的线性系统,因为每个点对应关系(x,y) -> (u,v)贡献两个方程:

x*a + y*b + 1*c + 0*d + 0*e + 0*f - (u*x)*g - (u*y)*h = u
0*a + 0*b + 0*c + x*d + y*e + 1*f - (v*x)*g - (v*y)*h = v

(通过将M (x y 1)^T = (l*u l*v l*1)^T扩展为三个方程并将l的值从第三个方程替换为前两个方程,可以得到这两个方程。)

将8个未知数a,b,c,...,h放入矩阵的解决方案是:

     / 4.63  2.61    370    \
M = (  0    -1.35   -116.64  )
     \ 0     0.00707   1    /

例如法院中心为{x: 0.5, y: 0.5},则必须先将其转换为上述坐标系,以获得(x,y) = (0,0)。然后您必须计算

   / x \     / 4.63  2.61    370    \   / 0 \      / 370    \
M (  y  ) = (  0    -1.35   -116.64  ) (  0  ) =  (  116.64  )
   \ 1 /     \ 0     0.00707   1    /   \ 1 /      \   1    /

通过去均质化,您可以获得中心的屏幕坐标为

(u,v) = (370/1, 116.64/1) ~= (370,117)

JavaScript实现可能如下所示:

// using library https://cdnjs.cloudflare.com/ajax/libs/mathjs/3.2.1/math.js

// standard soccer court dimensions
var soccerCourtLength = 105; // [m]
var soccerCourtWidth  =  68; // [m]

// soccer court corners in clockwise order with center = (0,0)
var courtCorners = [
    [-soccerCourtLength/2., soccerCourtWidth/2.], 
    [ soccerCourtLength/2., soccerCourtWidth/2.], 
    [ soccerCourtLength/2.,-soccerCourtWidth/2.], 
    [-soccerCourtLength/2.,-soccerCourtWidth/2.]];

// screen corners in clockwise order (unit: pixel)
var screenCorners = [
    [174., 57.], 
    [566., 57.],
    [690.,214.],
    [ 50.,214.]];

// compute projective mapping M from court to screen
//      / a b c \
// M = (  d e f  )
//      \ g h 1 /

// set up system of linear equations A X = B for X = [a,b,c,d,e,f,g,h]
var A = [];
var B = [];
var i;
for (i=0; i<4; ++i)
{
  var cc = courtCorners[i];
  var sc = screenCorners[i];
  A.push([cc[0], cc[1], 1., 0., 0., 0., -sc[0]*cc[0], -sc[0]*cc[1]]);
  A.push([0., 0., 0., cc[0], cc[1], 1., -sc[1]*cc[0], -sc[1]*cc[1]]);
  B.push(sc[0]);
  B.push(sc[1]);
}

var AInv = math.inv(A);
var X = math.multiply(AInv, B); // [a,b,c,d,e,f,g,h]

// generate matrix M of projective mapping from computed values
X.push(1);
M = [];
for (i=0; i<3; ++i)
    M.push([X[3*i], X[3*i+1], X[3*i+2]]);

// given court point (array [x,y] of court coordinates): compute corresponding screen point
function calcScreenCoords(pSoccer) {
  var ch = [pSoccer[0],pSoccer[1],1]; // homogenous coordinates
  var sh = math.multiply(M, ch);      // projective mapping to screen
  return [sh[0]/sh[2], sh[1]/sh[2]];  // dehomogenize
}

function courtPercToCoords(xPerc, yPerc) {
    return [(xPerc-0.5)*soccerCourtLength, (yPerc-0.5)*soccerCourtWidth];
}

var pScreen = calcScreenCoords(courtPercToCoords(0.2,0.2))

答案 1 :(得分:0)

我已经用纯HTML和JavaScript实现了它。您必须根据需要调整变量。 A和B是平行小边和大边的长度,H是飞人的高度。 x0,y0是该字段的左下角的坐标。如果对您有用,我将解释数学。

jQuery(function($){
    var $field2d = $('.field2d'), $ball = $('.ball');
    $field2d.on('mousemove', function(e){
        var pos = translateBallPosition(e.offsetX, e.offsetY);
        $ball.css({left: pos.x, top: pos.y});
    });
    var FB = {x0: 50, y0: 215, B: 640, A: 391, H: 158, P: 0};
    FB.Wd = $field2d.width();
    FB.Ht = $field2d.height();
    FB.P = FB.B * FB.H / (FB.B - FB.A);
    function translateBallPosition(X, Y){
        var x = X / FB.Wd * FB.B, y = (FB.Ht - Y) / FB.Ht * FB.H;
        y = y * FB.B * FB.H / (FB.A * FB.H + y * (FB.B - FB.A));
        x = x / FB.P * (FB.P - y) + y * FB.B / FB.P / 2;
        return {x: FB.x0 + x, y: FB.y0 - y};
    }
});
.field2d {
  position: relative;
  border: 1px dashed gray;
  background: #b0fdb5;
  width: 400px;
  height: 200px;
  margin: 5px auto;
  cursor: crosshair;
  text-align: center;
}

.field3d {
  position: relative;
  width: 743px;
  margin: auto;
}

.field3d>img {
  width: 100%;
  height: auto;
}

.ball {
  position: absolute;
  top: 0;
  left: 0;
  height: 20px;
  width: 20px;
  background: red;
  border-radius: 10px;
  margin: -20px 0 0 -10px;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div class="field3d">
  <img src="https://i.stack.imgur.com/ciekU.png" />
  <div class="ball"></div>
</div>
<div class="field2d">
  Hover over this div to see corresponding ball position
</div>