收入预测神经网络Python

时间:2018-09-06 00:29:41

标签: python neural-network

我正在尝试创建一个神经网络。我削减了a,因为我有1000多个列表。 我看到了很多教程,但是我需要一些帮助:

我可以使用列表列表代替dic吗?

# a[0] is the price
# a[1] is the paid value
# a[2] is my result


from sklearn.neighbors import KNeighborsClassifier
from pandas import DataFrame
a = [[0.063807299, 0.71, 0.00071],
     [0.363262854, 0.7, 0.0007],
     [0.836344317, 0.76, 0.00076]]

df = DataFrame(a)
df.columns = ['value1', 'value2', 'result']

X_train, y_train = df['value1'], df['value2']
knn = KNeighborsClassifier(n_neighbors=7)
knn.fit(X_train, y_train)
knn.score(X_train, y_train)


knn.predict([[1.2, 3.4]])
>>> 0.025  # This would be my results for example

1 个答案:

答案 0 :(得分:1)

是,可以。在熊猫库中,这变得微不足道。首先,您需要import pandas,然后使用以下代码可以将列表列表转换为熊猫数据框:

df = DataFrame(a, columns=headers)

然后您可以使用以下方法设置训练集:

X_train, y_train = df['value1'], df['value2']

您的value2列应包含分类器要使用的标签。对于KNN分类器,标签不能为float类型,因此只需将其调整为整数即可解决此问题。

a = [[0.063807299, 71, 0.00071],
     [0.363262854, 7, 0.0007],
     [0.836344317, 76, 0.00076]]

lab_enc = preprocessing.LabelEncoder()
df = DataFrame(a)
df.columns = ['value1', 'value2', 'result']
X_train, y_train = df['value1'].values.reshape(-1,1), df['value2'].values.reshape(-1,1)


knn = KNeighborsClassifier(n_neighbors=2)
knn.fit(X_train, y_train.ravel())
knn.score(X_train, y_train)


print(knn.predict([[0.7]]))